Service Life Evaluation through Probabilistic Method Considering Time-Dependent Chloride Behavior

2016 ◽  
Vol 28 (2) ◽  
pp. 149-156
Author(s):  
Seung-Jun Kwon
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5424
Author(s):  
Hyun-Sub Yoon ◽  
Keun-Hyeok Yang ◽  
Kwang-Myong Lee ◽  
Seung-Jun Kwon

Since a concrete structure exposed to a sulfate environment is subject to surface ion ingress that yields cracking due to concrete swelling, its service life evaluation with an engineering modeling is very important. In this paper, cementitious repair materials containing bacteria, Rhodobacter capsulatus, and porous spores for immobilization were developed, and the service life of RC (Reinforced Concrete) structures with a developed bacteria-coating was evaluated through deterministic and probabilistic methods. Design parameters such protective coating thickness, diffusion coefficient, surface roughness, and exterior sulfate ion concentration were considered, and the service life was evaluated with the changing mean and coefficient of variation (COV) of each factor. From service life evaluation, more conservative results were evaluated with the probabilistic method than the deterministic method, and as a result of the analysis, coating thickness and surface roughness were derived as key design parameters for ensuring service life. In an environment exposed to an exterior sulfate concentration of 200 ppm, using the deterministic method, the service life was 17.3 years without repair, 19.7 years with normal repair mortar, and 29.6 years with the application of bacteria-coating. Additionally, when the probabilistic method is applied in the same environment, the service life was changed to 9.2–16.0 years, 10.5–18.2 years, and 15.4–27.4 years, respectively, depending on the variation of design parameters. The developed bacteria-coating technique showed a 1.47–1.50 times higher service life than the application of normal repair mortar, and the effect was much improved when it had a low COV of around 0.1.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Aruz Petcherdchoo

This paper presents sensitivity of service life extension and CO2 emission due to silane (alkyltriethoxysilane) treatment on concrete structures under time-dependent chloride attack. The service life is predicted by the Crank–Nicolson-based finite difference approach for avoiding the complexity in solving Fick’s second law. The complexity occurs due to time-dependent chloride attack and nonconstant diffusion coefficient of concrete with silane treatment. At the application time of silane treatment, the cumulative CO2 emission is assessed. The effectiveness of silane treatment is defined as the ratio of the service life extension to the cumulative CO2 emission assessed within the corrosion-free service life. The service life extension is defined as the difference between corrosion-free service life of concrete structures without and with time-based application of silane treatment. From the study, the diffusion of chlorides in concrete with silane treatment is found to be retarded. In comparison, the strategy without deterioration of silanes during effective duration is more suitable for service life extension but less effective than that with deterioration. In the sensitivity analysis, there are up to eight parameters to be determined. The service life of concrete structures without silane treatment is most sensitive to the water-to-cement ratio and the threshold depth of concrete structures. Considering only five parameters in silane treatment strategies, the service life is most sensitive to the first application time of silane treatment. The cumulative CO2 emission is most sensitive to either the first application time of silane treatment or the amount of CO2 emission per application.


2013 ◽  
Vol 671-674 ◽  
pp. 1672-1675
Author(s):  
Yan Hui Li ◽  
Yang Yang Zhang ◽  
Jing Cun Wei ◽  
Yun Feng Wu

Through calculation and analysis on routine examination and neutralization of reinforced concrete chimney, the service life of concrete structure was evaluated only considering neutralization of concrete single factor. The results show that the neutralization of the reinforced concrete chimney was serious than that of other similar projects. The initiation time of reinforcement corrosion were 19.3a, cracking time of concrete cover were 27.35a.


Sign in / Sign up

Export Citation Format

Share Document