scholarly journals Hyperspectral remote sensing for light pollution monitoring

2009 ◽  
Vol 49 (1) ◽  
Author(s):  
A. Barducci ◽  
M. Benvenuti ◽  
F. Castagnoli ◽  
D. Guzzi ◽  
P. Marcoionni ◽  
...  

2019 ◽  
Vol 9 (9) ◽  
pp. 1943 ◽  
Author(s):  
Lifei Wei ◽  
Ziran Yuan ◽  
Yanfei Zhong ◽  
Lanfang Yang ◽  
Xin Hu ◽  
...  

Hyperspectral remote sensing can be used to effectively identify contaminated elements in soil. However, in the field of monitoring soil heavy metal pollution, hyperspectral remote sensing has the characteristics of high dimensionality and high redundancy, which seriously affect the accuracy and stability of hyperspectral inversion models. To resolve the problem, a gradient boosting regression tree (GBRT) hyperspectral inversion algorithm for heavy metal (Arsenic (As)) content in soils based on Spearman’s rank correlation analysis (SCA) coupled with competitive adaptive reweighted sampling (CARS) is proposed in this paper. Firstly, the CARS algorithm is used to roughly select the original spectral data. Second derivative (SD), Gaussian filtering (GF), and min-max normalization (MMN) pretreatments are then used to improve the correlation between the spectra and As in the characteristic band enhancement stage. Finally, the low-correlation bands are removed using the SCA method, and a subset with absolute correlation values greater than 0.6 is retained as the optimal band subset after each pretreatment. For the modeling, the five most representative characteristic bands were selected in the Honghu area of China, and the nine most representative characteristic bands were selected in the Daye area of China. In order to verify the generalization ability of the proposed algorithm, 92 soil samples from the Honghu and Daye areas were selected as the research objects. With the use of support vector machine regression (SVMR), linear regression (LR), and random forest (RF) regression methods as comparative methods, all the models obtained a good prediction accuracy. However, among the different combinations, CARS-SCA-GBRT obtained the highest precision, which indicates that the proposed algorithm can select fewer characteristic bands to achieve a better inversion effect, and can thus provide accurate data support for the treatment and recovery of heavy metal pollution in soils.



Author(s):  
Q. Zhou ◽  
Y. Zhang ◽  
D. Gao ◽  
B. Sun

Abstract. Night-time light (NTL) remote sensing data has been widely used in the analysis of human activities at night for a large extent, such as light pollution monitoring and recognition of urban functional regions. In most previous studies, the spatial resolutions of NTL remote sensing data are rather low (e.g., 500 m or coarser). Besides, remote sensing classification of land use rather than land cover types is often a hard task. Due to the reasons, it is difficult to meet the demand of urban refined management. In this study, mobile big data and Luojia1-01 (LJ1-01) NTL remote sensing satellite data with higher spatial resolution are adopted for extracting urban functional regions at the street-level scale. Taking Shenzhen city as a case, mobile big data (i.e., the volume of mobile devices) with the accuracy of approximate 150 m (i.e., 7-bit GeoHash encoding format) is integrated with NTL remote sensing data. After a hot spot analysis, the correlation between the two types of data are analysed. The typical supervised classification algorithms including KNN, SVM and random forest are used to distinguish urban functional regions, which are represented by five types, namely residential, business and commercial, industrial, transportation and other areas. The results show the effectiveness in extracting land use types in cities by combination of Luojia1-01 night-time light remote sensing and mobile big data. This study provides a basis for monitoring night light pollution of residential area, urban planning and the construction of smart cities.



1997 ◽  
Author(s):  
Tom Wilson ◽  
Rebecca Baugh ◽  
Ron Contillo ◽  
Tom Wilson ◽  
Rebecca Baugh ◽  
...  


2001 ◽  
Author(s):  
Curtiss O. Davis




1999 ◽  
Author(s):  
Curtiss O. Davis


2017 ◽  
Author(s):  
Mark P.S. Krekeler ◽  
◽  
Michelle Burke ◽  
C. Scott Allen ◽  
Barrett Sather ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document