scholarly journals Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3

1999 ◽  
Vol 42 (6) ◽  
Author(s):  
G. Grunthal ◽  
The GSHAP Region Working Group

The activities of the Regional Centre 3 of the Global Seismic Hazard Assessment Program (GSHAP) covering Europe north of 46°N and west of 32°E are summarized starting with the establishment of the GSHAP Centre at the GFZ Potsdam in 1993 and leading finally in the calculation and creation of the GSHAP seismic hazard map in terms of horizontal Peak Ground Acceleration (PGA). Moreover, the activities of separate working groups which contribute with their results for certain parts of the study area to the final product of the Regional Centre are described. Details are given on the development of the homogeneous seismicity working file, the delineation of seismic source zones, the data preprocessing as well as on the chosen PGA-attenuation relations.

1999 ◽  
Vol 42 (6) ◽  
Author(s):  
D. Giardini ◽  
G. Grünthal ◽  
K. M. Shedlock ◽  
P. Zhang

The Global Seismic Hazard Assessment Program (GSHAP), a demonstration project of the UN/International Decade of Natural Disaster Reduction, was conducted in the 1992-1998 period with the goal of improving global standards in seismic hazard assessment. The GSHAP Global Seismic Hazard Map has been compiled by joining the regional maps produced for different GSHAP regions and test areas; it depicts the global seismic hazard as Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years, corresponding to a return period of 475 years.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
M. J. Jiménez ◽  
M. García-Fernández

The contribution of the Ibero-Maghreb region to the global GSHAP map has been the result of a fruitful cooperation among the participants in the established Working Group including representatives from Algeria, Morocco, Portugal, Spain and Tunisia and coordinated by ICTJA-CSIC, Spain. For the first time, a map of regional seismic source zones is presented, and agreement on a common procedure for hazard computation in the region has been achieved. The computed Ibero-Maghreb seismic hazard map constitutes the first step towards a uniform hazard assessment for the region. Further joint regional efforts are still needed for earthquake hazard studies based on a homogeneous regional earthquake catalogue. Ongoing initiatives in relation to seismic hazard assessment in the Mediterranean should profit both from these results and the established cooperation among different groups in the region as well as contribute to future regional studies.


2001 ◽  
Vol 17 (3) ◽  
pp. 399-415 ◽  
Author(s):  
Jamal A. Abdalla ◽  
Yahia E-A. Mohamedzein ◽  
A. Abdel Wahab

This paper presents seismic hazard assessment and seismic zoning of Sudan and its vicinity based on probabilistic approach. The area studied lies between 22° E- 45° E and 0° - 24° N. Tectonics of Sudan and its vicinity is first reviewed. An updated NOAA catalogue, containing both historical and instrumental events and covering the period from 700 A.D. to 1993 is then used. Seismic source regions are modeled and relationships between earthquake magnitude and earthquake frequency are established. A modified attenuation relation is used. Seismic hazard assessment is then carried out for 60 km interval grid points. Seismic hazard maps of the studied area based on peak ground acceleration (PGA) for 10% probability of exceedance for time-spans of 50, 100, 200 and 250 years are presented. The results showed that the PGA ranges from 0.02g for low seismic activity regions to around 0.62g for high seismic activity regions. A seismic zone map is also shown for 475 years return period.


2001 ◽  
Vol 3 (1-2) ◽  
pp. 67-86 ◽  
Author(s):  
Didier LEYNAUD ◽  
Denis JONGMANS ◽  
Hervé TEERLYNCK ◽  
Thierry CAMELBEECK

The seismic hazard assessment has been conducted on the Belgian territory conforming to Eurocode 8, the European earthquake building code. The study was performed using the seismological database of the Royal Observatory of Belgium and the publications and open reports available for geological and geophysical data. The seismic hazard in Belgium was evaluated with a probabilistic analysis, using the public software SEISRISK III from the U.S. Geological Survey. The output consists of hazard maps showing the distribution of the horizontal peak ground acceleration for a return period of 475 years. Different maps are presented according to the choices that can be made on the attenuation laws and the definition of the seismic source zones. The computations have been made assuming that all Belgian territory is constituted by rock, as requested by Eurocode 8.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
B. Tavakoli ◽  
M. Ghafory-Ashtiany

The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA) for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Rashad Sawires ◽  
Miguel A. Santoyo ◽  
José A. Peláez ◽  
Raúl Daniel Corona Fernández

Abstract Here we present a new updated and unified Poissonian earthquake catalog for Mexico. The details about the catalog compilation, the removal of duplicate events, unifying the magnitude scales, removal of dependent events through the declustering process and its completeness analysis are presented. Earthquake and focal mechanism data have been compiled from various local, regional and international sources. Large earthquake events (MW ≥ 6.5) have been carefully revised for their epicentral locations and magnitudes from trusted publications. Different magnitude-conversion relationships, compatible with available local and regional ones, has been established to obtain unified moment magnitude estimates for the whole catalog. Completeness periods for the declustered catalog were estimated for the definition of appropriate seismic source models for the whole territory. The final unified Poissonian earthquake catalog spans from 1787 to 2018, covering a spatial extent of 13° to 33°N and 91° to 117°W. This catalog is compatible with other published catalogs providing basis for new analysis related to seismicity, seismotectonics and seismic hazard assessment in Mexico.


2016 ◽  
Vol 67 (3) ◽  
pp. 275-290 ◽  
Author(s):  
Jozef Hók ◽  
Robert Kysel ◽  
Michal Kováč ◽  
Peter Moczo ◽  
Jozef Kristek ◽  
...  

Abstract We present a new seismic source zone model for the seismic hazard assessment of Slovakia based on a new seismotectonic model of the territory of Slovakia and adjacent areas. The seismotectonic model has been developed using a new Slovak earthquake catalogue (SLOVEC 2011), successive division of the large-scale geological structures into tectonic regions, seismogeological domains and seismogenic structures. The main criteria for definitions of regions, domains and structures are the age of the last tectonic consolidation of geological structures, thickness of lithosphere, thickness of crust, geothermal conditions, current tectonic regime and seismic activity. The seismic source zones are presented on a 1:1,000,000 scale map.


2020 ◽  
Vol 20 (3) ◽  
pp. 743-753
Author(s):  
Yu-Sheng Sun ◽  
Hsien-Chi Li ◽  
Ling-Yun Chang ◽  
Zheng-Kai Ye ◽  
Chien-Chih Chen

Abstract. Real-time probabilistic seismic hazard assessment (PSHA) was developed in this study in consideration of its practicability for daily life and the rate of seismic activity with time. Real-time PSHA follows the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent seismic source probability. Over the last decade, the pattern informatics (PI) method has been developed as a time-dependent probability model of seismic source. We employed this method as a function of time-dependent seismic source probability, and we selected two major earthquakes in Taiwan as examples to explore real-time PSHA. These are the Meinong earthquake (ML 6.6) of 5 February 2016 and the Hualien earthquake (ML 6.2) of 6 February 2018. The seismic intensity maps produced by the real-time PSHA method facilitated the forecast of the maximum expected seismic intensity for the following 90 d. Compared with real ground motion data from the P-alert network, our seismic intensity forecasting maps showed considerable effectiveness. This result indicated that real-time PSHA is practicable and provides useful information that could be employed in the prevention of earthquake disasters.


2017 ◽  
Author(s):  
Zeynep Gülerce ◽  
Kadir Buğra Soyman ◽  
Barış Güner ◽  
Nuretdin Kaymakci

Abstract. This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of North Anatolian Fault Zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of 1999 Kocaeli and Düzce earthquakes, Central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that associated with the rupture system. Uncertainty in the SSC model parameters (e.g. b-value, maximum magnitude, weights of the rupture scenarios) is considered in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully-documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.


Sign in / Sign up

Export Citation Format

Share Document