scholarly journals Decomposition Characteristics of CF4 by SiC/Al2O3 Modified with Cerium Sulfate Using Microwave System

2015 ◽  
Vol 37 (12) ◽  
pp. 668-673
Author(s):  
Sung-Woo Choi
2019 ◽  
Vol 85 (6) ◽  
pp. 11-24
Author(s):  
I. V. Nikolaeva ◽  
A. A. Kravchenko ◽  
S. V. Palessky ◽  
S. V. Nechepurenko ◽  
D. V. Semenova

Two methods — ICP-MS and ICP-AES are used for certification of the new reference material — needles of Siberian pine (NSP-1). Techniques of the analysis include decomposition of plant samples in two different ways: acid digestion in a microwave system MARS-5 and lithium metaborate fusion followed by ICP-MS and ICP-AES analysis of the solutions. Simultaneous determinations of all the elements were carried out in low, medium and high resolution using SF-mass-spectrometer ELEMENT and atomic-emission spectrometer IRIS Advantage with external calibrations and internal standards (In — ICP-MS, Sc —ICP-AES). Middle and high resolutions of ICP mass spectrometer were used for interference corrections. Data obtained by ICP-MS and ICP-AES with different decomposition techniques are in good agreement. The ICP-MS and ICP-AES techniques have been validated by the analysis of three plant reference materials: LB-1 (leaf of a birch), Tr-1 (grass mixture) and EK-1 (Canadian pondweed). These techniques were used for the determination of 38 elements in the new reference material NSP-1. Relative standard deviations for most of the determined elements were below 10%. Combination of ICP-MS and ICP-AES techniques for certification of the new reference material makes it possible to expand the set of elements to be determined and to reduce the total analysis time.


2021 ◽  
Vol 323 ◽  
pp. 112657
Author(s):  
Juan Rafael Filgueira Guerra ◽  
Antonio Luiz Pereira de Siqueira Campos ◽  
Humberto Dionísio de Andrade

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Antonia Grimm ◽  
Moritz Winkelmann ◽  
Jakob Weiß ◽  
Georg Gohla ◽  
Gunnar Blumenstock ◽  
...  

Abstract Background We evaluated a magnetic resonance (MR)-conditional high-power microwave ablation system. Methods An exvivo 1.5-T evaluation was conducted by varying the sequence (T1-weighted volume interpolated breath-hold examination, T1w-VIBE; T1-weighted fast low-angle shot, T1w-FLASH; T2-weighted turbo spin-echo, T2w-TSE), applicator angulation to B0 (A-to-B0), slice orientation, and encoding direction. Tip location error (TLE) and artefact diameters were measured, and influence of imaging parameters was assessed with analysis of variance and post hoc testing. Twenty-four exvivo ablations were conducted in three bovine livers at 80 W and 120 W. Ablation durations were 5, 10, and 15 min. Ablation zones were compared for short-axis diameter (SAD), volume, and sphericity index (SI) with unpaired t test. Results The artefact pattern was similar for all sequences. The shaft artefact (4.4 ± 2.9 mm, mean ± standard deviation) was dependent on the sequence (p = 0.012) and the A-to-B0 (p < 0.001); the largest shaft diameter was measured with T1w-FLASH (6.3 ± 3.4 mm) and with perpendicular A-to-B0 (6.7 ± 2.4 mm). The tip artefact (1.6 ± 0.7 mm) was dependent on A-to-B0 (p = 0.001); TLE was -2.6 ± 1.0 mm. Ablation results at the maximum setting (15 min, 120 W) were SAD = 42.0 ± 1.41 mm; volume = 56.78 ± 3.08 cm3, SI = 0.68 ± 0.05. In all ablations, SI ranged 0.68–0.75 with the smallest SI at 15 min and 120 W (p = 0.048). Conclusion The system produced sufficiently large ablation zones and the artefact was appropriate for MR-guided interventions.


2016 ◽  
Vol 61 (3) ◽  
pp. 296-301 ◽  
Author(s):  
O. V. Andreev ◽  
Yu. G. Denisenko ◽  
E. I. Sal’nikova ◽  
N. A. Khritokhin ◽  
K. S. Zyryanova
Keyword(s):  

2006 ◽  
Vol 6 (4) ◽  
pp. 939-944 ◽  
Author(s):  
A. Redo-Sanchez ◽  
J. Tejada ◽  
X. Bohigas
Keyword(s):  

2002 ◽  
Vol 76 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Jining Xie ◽  
Pramod K Sharma ◽  
V.V Varadan ◽  
V.K Varadan ◽  
Bhabendra K Pradhan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document