A microwave system for measuring moisture of hollow concrete blocks

2021 ◽  
Vol 323 ◽  
pp. 112657
Author(s):  
Juan Rafael Filgueira Guerra ◽  
Antonio Luiz Pereira de Siqueira Campos ◽  
Humberto Dionísio de Andrade
2019 ◽  
Vol 85 (6) ◽  
pp. 11-24
Author(s):  
I. V. Nikolaeva ◽  
A. A. Kravchenko ◽  
S. V. Palessky ◽  
S. V. Nechepurenko ◽  
D. V. Semenova

Two methods — ICP-MS and ICP-AES are used for certification of the new reference material — needles of Siberian pine (NSP-1). Techniques of the analysis include decomposition of plant samples in two different ways: acid digestion in a microwave system MARS-5 and lithium metaborate fusion followed by ICP-MS and ICP-AES analysis of the solutions. Simultaneous determinations of all the elements were carried out in low, medium and high resolution using SF-mass-spectrometer ELEMENT and atomic-emission spectrometer IRIS Advantage with external calibrations and internal standards (In — ICP-MS, Sc —ICP-AES). Middle and high resolutions of ICP mass spectrometer were used for interference corrections. Data obtained by ICP-MS and ICP-AES with different decomposition techniques are in good agreement. The ICP-MS and ICP-AES techniques have been validated by the analysis of three plant reference materials: LB-1 (leaf of a birch), Tr-1 (grass mixture) and EK-1 (Canadian pondweed). These techniques were used for the determination of 38 elements in the new reference material NSP-1. Relative standard deviations for most of the determined elements were below 10%. Combination of ICP-MS and ICP-AES techniques for certification of the new reference material makes it possible to expand the set of elements to be determined and to reduce the total analysis time.


2020 ◽  
pp. 49-52
Author(s):  
S.E. YANUTINA ◽  

The relevance of research in the factory laboratory of JSC «198 KZHI», which is part of the HC GVSU «Center», is dictated by the need to dispose of foam polystyrene waste that occurs in large quantities when producing the precast concrete. In the production of three-layer external wall panels, polystyrene heatinsulating plates of the PPS 17-R-A brand are used as an effective insulation material. The secondary use of PPS 17-R-A for its intended purpose, as a heater, is not possible. The volume of foam polystyrene produced varies from 25 to 45 m3 per month. Utilization (disposal) of foam polystyrene waste is an expensive undertaking. Its use as a filler in the production of expanded polystyrene blocks was tested in the factory’s laboratory to produce foam polystyrene concrete with specified physical and mechanical characteristics. The results of testing of expanded polystyrene concrete of classes B2.5 and B 7.5 are presented. It is shown that under the conditions of the reinforced concrete factory technology, the production of polystyrene concrete blocks is possible with the achievement of the design strength. The information presented in the article is aimed at motivating specialists who produce recast concrete to the possibility of using foam polystyrene waste for low-rise construction. Keywords: foam polystyrene, ecology, energy efficiency, foam polystyrene concrete, foam polystyrene heat insulation plates, precast concrete.


2020 ◽  
Vol 1 (1) ◽  
pp. 19-23
Author(s):  
Diah Willis L ◽  
Thomas Priyasmanu ◽  
Wahyu Panji A ◽  
D. H. Praswanto ◽  
E. Y. Setyawan

Development in the current development sector has grown rapidly, in this development we can see a good potential to be developed, namely the development of bricks with good quality compared to using red bricks which production takes a long time. Batako is an alternative that can be used in the construction of a building, because currently the price of red brick is quite high because the production cost is quite expensive. Besides, the price of firewood used for cooking red brick is getting difficult. Meanwhile, the demand for brick gradually increased because brick was one of the main components in building construction. So it needs to be developed in making brick blocks because the time is relatively short in the drying process. Therefore the community service team made a brick making machine with a vibration system for compaction and a faster production process in brick making using a machine that has been made, so that it can increase partner income, who previously produced 120 pieces with a manual system using a machine that could produce 500 pieces of brick per day.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Antonia Grimm ◽  
Moritz Winkelmann ◽  
Jakob Weiß ◽  
Georg Gohla ◽  
Gunnar Blumenstock ◽  
...  

Abstract Background We evaluated a magnetic resonance (MR)-conditional high-power microwave ablation system. Methods An exvivo 1.5-T evaluation was conducted by varying the sequence (T1-weighted volume interpolated breath-hold examination, T1w-VIBE; T1-weighted fast low-angle shot, T1w-FLASH; T2-weighted turbo spin-echo, T2w-TSE), applicator angulation to B0 (A-to-B0), slice orientation, and encoding direction. Tip location error (TLE) and artefact diameters were measured, and influence of imaging parameters was assessed with analysis of variance and post hoc testing. Twenty-four exvivo ablations were conducted in three bovine livers at 80 W and 120 W. Ablation durations were 5, 10, and 15 min. Ablation zones were compared for short-axis diameter (SAD), volume, and sphericity index (SI) with unpaired t test. Results The artefact pattern was similar for all sequences. The shaft artefact (4.4 ± 2.9 mm, mean ± standard deviation) was dependent on the sequence (p = 0.012) and the A-to-B0 (p < 0.001); the largest shaft diameter was measured with T1w-FLASH (6.3 ± 3.4 mm) and with perpendicular A-to-B0 (6.7 ± 2.4 mm). The tip artefact (1.6 ± 0.7 mm) was dependent on A-to-B0 (p = 0.001); TLE was -2.6 ± 1.0 mm. Ablation results at the maximum setting (15 min, 120 W) were SAD = 42.0 ± 1.41 mm; volume = 56.78 ± 3.08 cm3, SI = 0.68 ± 0.05. In all ablations, SI ranged 0.68–0.75 with the smallest SI at 15 min and 120 W (p = 0.048). Conclusion The system produced sufficiently large ablation zones and the artefact was appropriate for MR-guided interventions.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4174
Author(s):  
André M. Santos ◽  
Ângelo J. Costa e Silva ◽  
João M. F. Mota ◽  
João M. P. Q. Delgado ◽  
Fernando A. N. Silva ◽  
...  

The understanding of the mechanical fixation behavior of coatings is crucial for a better comprehension of the bonding systems, especially at the interface between the mortar and the substrate. Physical adherence is related, among other things, to the contents of the materials used in the roughcast and mortar coatings, due to the colloidal water penetration into the pores of the substrate. This work evaluated the influence of different lime solution additions replacing the kneading water in the preparation of roughcast and mortar coatings. Two types of substrates were investigated:ceramic bricks and concrete blocks. Three wall masonry panels were constructed, with dimensions of 220 × 180 cm2, one of concrete block and two of ceramic bricks, followed by the application of roughcast and mortar coating with an average thickness of 5 mm and 20 mm, respectively. Direct tensile bond strength tests were performed and the results, with a 95% confidence level, showed that substrate ceramic and treatment in the roughcast exhibited a better behavior regarding the distribution of the tensile bond strength of the tested specimens. However, no significant differences of the amount of addition used (0%, 5%, 10% and 15%) on the tensile bond strength were observed.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


2006 ◽  
Vol 6 (4) ◽  
pp. 939-944 ◽  
Author(s):  
A. Redo-Sanchez ◽  
J. Tejada ◽  
X. Bohigas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document