scholarly journals Nearly recombining processes and the calculation of expectations

2008 ◽  
Vol Volume 9, 2007 Conference in... ◽  
Author(s):  
Imme Van den Berg ◽  
Elsa Amaro

International audience In the context of Nonstandard Analysis, we study stochastic difference equations with infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to be nearly-equivalent to a recombining stochastic process. The characterization is based upon a partial differential equation involving the trend and the conditional variance of the original process. An analogy with Ito’s Lemma is pointed out. As an application we obtain a method for approximation of expectations, in terms of two ordinary differential equations, also involving the trend and the conditional variance of the original process, and of Gaussian integrals. Dans le contexte de l’Analyse Nonstandard, nous étudions des équations différentielles stochastiques avec des pas infiniment petits. En particulier, nous formulons une condition nécessaire et suffisante pourqu’une solution soit presque-équivalente à un processus stochastique recombinant. La caractérisation est donnée par une équation aux dérivées partielles de la tendance et de la variance conditionnelle du processus de départ. Nous indiquons une analogie avec le Lemme d’Ito. Nous appliquons cette caractérisation au problème de la détermination d’espérances pour le processus de départ. En fait, on obtient une approximation infinitésimale en resolvant deux équations différentielles ordinaires, également de la tendance et de la variance conditionnelle de ce processus, et en calculant une intégrale de Gauss.

Author(s):  
Robert Laister ◽  
Mikołaj Sierżęga

Abstract We derive a blow-up dichotomy for positive solutions of fractional semilinear heat equations on the whole space. That is, within a certain class of convex source terms, we establish a necessary and sufficient condition on the source for all positive solutions to become unbounded in finite time. Moreover, we show that this condition is equivalent to blow-up of all positive solutions of a closely-related scalar ordinary differential equation.


2014 ◽  
Vol 57 (3) ◽  
pp. 543-554
Author(s):  
JANNE HEITTOKANGAS ◽  
ATTE REIJONEN

AbstractIf A(z) belongs to the Bergman space , then the differential equation f″+A(z)f=0 is Blaschke-oscillatory, meaning that the zero sequence of every nontrivial solution satisfies the Blaschke condition. Conversely, if A(z) is analytic in the unit disc such that the differential equation is Blaschke-oscillatory, then A(z) almost belongs to . It is demonstrated that certain “nice” Blaschke sequences can be zero sequences of solutions in both cases when A ∈ or A ∉ . In addition, no condition regarding only the number of zeros of solutions is sufficient to guarantee that A ∈ .


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Takuro Abe ◽  
Daisuke Suyama ◽  
Shuhei Tsujie

International audience The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q; t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free L’arrangement Ish a été introduit par Armstrong pour donner une nouvelle interprétation des nombres $q; t$-Catalan de Garsia et Haiman. Armstrong et Rhoades ont montré qu’il y avait des ressemblances frappantes entre l’arrangement Shi et l’arrangement Ish et ont posé des conjectures. L’une d’elles est de savoir si l’arrangement Ish est un arrangement libre ou pas. Dans cet article, nous vérifions que l’arrangement Ish est supersoluble et donc libre. De plus, on donne une condition nécessaire et suffisante pour que l’arrangement Ish réduit soit libre.


2018 ◽  
Vol 7 (2) ◽  
pp. 53
Author(s):  
Prebo Jackreece

The purpose of this paper is to develop a qualitative stability analysis of a class of nonlinear integro-differential equation within the framework of Lyapunov-Krasovskii. We show that the existence of a Lyapunov-Krasovskii functional is a necessary and sufficient condition for the uniform asymptotic stability of the nonlinear Volterra integro-differential equations.


Author(s):  
Aurel Diamandescu

AbstractIt is proved a necessary and sufficient condition for the existence of at least one Ψ- bounded solution of a linear non- homogeneous Lyapunov matrix differential equation. In addition, it is given a result in connection with the asymptotic behavior of the Ψ- bounded solutions of this equation.


1973 ◽  
Vol 8 (1) ◽  
pp. 133-135 ◽  
Author(s):  
David Lowell Lovelady

A condition which was previously found to be sufficient for global existence and uniqueness of solutions of an ordinary differential equation is shown herein to be necessary, if it is also required that solutions are exponentially bounded.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Boram Park ◽  
Yoshio Sano

Graph Theory International audience In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient condition for the competition number of a line graph being one. In this paper, we generalize this result to the competition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is at most two, and give necessary conditions and sufficient conditions for the competition number of a generalized line graph being one.


2003 ◽  
Vol 2003 (67) ◽  
pp. 4217-4227
Author(s):  
Chaochun Qu ◽  
Ping Wang

We consider the uniqueness of the inverse problem for a semilinear elliptic differential equation with Dirichlet condition. The necessary and sufficient condition of unique solution is obtained. We improved the results obtained by Isakov and Sylvester (1994) for the same problem.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Steven N. Karp

International audience The totally nonnegative Grassmannian Gr≥0 k,n is the set of k-dimensional subspaces V of Rn whose nonzero Plucker coordinates all have the same sign. In their study of scattering amplitudes in N = 4 supersym- metric Yang-Mills theory, Arkani-Hamed and Trnka (2013) considered the image (called an amplituhedron) of Gr≥0 k,n under a linear map Z : Rn → Rr, where k ≤ r and the r × r minors of Z are all positive. One reason they required this positivity condition is to ensure that the map Gr≥0 k,n → Grk,r induced by Z is well defined, i.e. it takes everynelement of Gr≥0 k,n to a k-dimensional subspace of Rr. Lam (2015) gave a sufficient condition for the induced map Gr≥0 k,n → Grk,r to be well defined, in which case he called the image a Grassmann polytope. (In the case k = 1, Grassmann polytopes are just polytopes, and amplituhedra are cyclic polytopes.) We give a necessary and sufficient condition for the induced map Gr≥0 k,n → Grk,r to be well defined, in terms of sign variation. Using previous work we presented at FPSAC 2015, we obtain an equivalent condition in terms of the r × r minors of Z (assuming Z has rank r).


Sign in / Sign up

Export Citation Format

Share Document