scholarly journals Upper k-tuple domination in graphs

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Gerard Jennhwa Chang ◽  
Paul Dorbec ◽  
Hye Kyung Kim ◽  
André Raspaud ◽  
Haichao Wang ◽  
...  

Graph Theory International audience For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V (G) such that |N [v] ∩ S| ≥ k for every vertex v, where N [v] = {v} ∪ {u ∈ V (G) : uv ∈ E(G)}. The upper k-tuple domination number of G, denoted by Γ×k (G), is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on Γ×k (G) for r-regular graphs G with r ≥ k, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on Γ×2 (G) for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

2013 ◽  
Vol 05 (04) ◽  
pp. 1350024 ◽  
Author(s):  
B. S. PANDA ◽  
S. PAUL

A subset L ⊆ V of a graph G = (V, E) is called a connected liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ L| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u]∪NG[v])∩L| ≥ 3, and (iii) the induced subgraph of G on L is connected. In this paper, we initiate the algorithmic study of minimum connected liar's domination problem by showing that the corresponding decision version of the problem is NP-complete for general graph. Next we study this problem in subclasses of chordal graphs where we strengthen the NP-completeness of this problem for undirected path graph and prove that this problem is linearly solvable for block graphs. Finally, we propose an approximation algorithm for minimum connected liar's domination problem and investigate its hardness of approximation in general graphs.


2021 ◽  
Vol vol. 23 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Michael A. Henning ◽  
Arti Pandey ◽  
Vikash Tripathi

A dominating set $D$ of a graph $G$ without isolated vertices is called semipaired dominating set if $D$ can be partitioned into $2$-element subsets such that the vertices in each set are at distance at most $2$. The semipaired domination number, denoted by $\gamma_{pr2}(G)$ is the minimum cardinality of a semipaired dominating set of $G$. Given a graph $G$ with no isolated vertices, the \textsc{Minimum Semipaired Domination} problem is to find a semipaired dominating set of $G$ of cardinality $\gamma_{pr2}(G)$. The decision version of the \textsc{Minimum Semipaired Domination} problem is already known to be NP-complete for chordal graphs, an important graph class. In this paper, we show that the decision version of the \textsc{Minimum Semipaired Domination} problem remains NP-complete for split graphs, a subclass of chordal graphs. On the positive side, we propose a linear-time algorithm to compute a minimum cardinality semipaired dominating set of block graphs. In addition, we prove that the \textsc{Minimum Semipaired Domination} problem is APX-complete for graphs with maximum degree $3$.


Author(s):  
Padamutham Chakradhar ◽  
Palagiri Venkata Subba Reddy

For a simple, undirected, connected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called a total Roman {3}-dominating function (TR3DF) of [Formula: see text] with weight [Formula: see text]: (C1) For every vertex [Formula: see text] if [Formula: see text], then [Formula: see text] has [Formula: see text] ([Formula: see text]) neighbors such that whose sum is at least 3, and if [Formula: see text], then [Formula: see text] has [Formula: see text] ([Formula: see text]) neighbors such that whose sum is at least 2. (C2) The subgraph induced by the set of vertices labeled one, two or three has no isolated vertices. For a graph [Formula: see text], the smallest possible weight of a TR3DF of [Formula: see text] denoted [Formula: see text] is known as the total Roman[Formula: see text]-domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum total Roman {3}-domination problem (MTR3DP). In this paper, we show that the problem of deciding if [Formula: see text] has a TR3DF of weight at most [Formula: see text] for chordal graphs is NP-complete. We also show that MTR3DP is polynomial time solvable for bounded treewidth graphs, chain graphs and threshold graphs. We design a [Formula: see text]-approximation algorithm for the MTR3DP and show that the same cannot have [Formula: see text] ratio approximation algorithm for any [Formula: see text] unless NP [Formula: see text]. Next, we show that MTR3DP is APX-complete for graphs with [Formula: see text]. We also show that the domination and total Roman {3}-domination problems are not equivalent in computational complexity aspects. Finally, we present an integer linear programming formulation for MTR3DP.


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950063
Author(s):  
Saikat Pal ◽  
D. Pradhan

In a graph [Formula: see text], the degree of a vertex [Formula: see text], denoted by [Formula: see text], is defined as the number of edges incident on [Formula: see text]. A set [Formula: see text] of vertices of [Formula: see text] is called a strong dominating set if for every [Formula: see text], there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text]. For a given graph [Formula: see text], Min-Strong-DS is the problem of finding a strong dominating set of minimum cardinality. The decision version of Min-Strong-DS is shown to be NP -complete for chordal graphs. In this paper, we present polynomial time algorithms for computing a strong dominating set in block graphs and proper interval graphs, two subclasses of chordal graphs. On the other hand, we show that for a graph [Formula: see text] with [Formula: see text]-vertices, Min-Strong-DS cannot be approximated within a factor of [Formula: see text] for every [Formula: see text], unless NP [Formula: see text] DTIME ([Formula: see text]). We also show that Min-Strong-DS is APX -complete for graphs with maximum degree [Formula: see text]. On the positive side, we show that Min-Strong-DS can be approximated within a factor of [Formula: see text] for graphs with maximum degree [Formula: see text].


2010 ◽  
Vol 4 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Chee Shiu ◽  
Xue-Gang Chen ◽  
Hong Chan

Let G be a graph. A set S of vertices of G is called a total dominating set of G if every vertex of G is adjacent to at least one vertex in S. The total domination number ?t(G) and the matching number ??(G) of G are the cardinalities of the minimum total dominating set and the maximum matching of G, respectively. In this paper, we will introduce an upper bound of the di?erence between ?t(G) and ??(G). We will also characterize every tree T with ?t(T)? ??(T), and give a family of graphs with ?t(G)???(G).


Author(s):  
Bünyamin Şahin ◽  
Abdulgani Şahin

In a graph G, a vertex v is dominated by an edge e, if e is incident with v or e is incident with a vertex which is a neighbor of v. An edge-vertex dominating set D is a subset of the edge set of G such that every vertex of G is edge-vertex dominated by an edge of D. The ev-domination number equals to the number of an edge-vertex dominating set of G which has minimum cardinality and it is denoted by γev (G). We here analyze double edge-vertex domination such that a double edge-vertex dominating set D is a subset of the edge set of G, provided that all vertices in G are ev-dominated by at least two edges of D. The double ev-domination number equals to the number of an double edge-vertex dominating set of G which has minimum cardinality and it is denoted by γdev (G). We demonstrate that the enumeration of the double ev-domination number of chordal graphs is NP-complete. Moreover several results about total domination number and double ev-domination number are obtained for trees.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


Sign in / Sign up

Export Citation Format

Share Document