scholarly journals The inapproximability for the $(0,1)$-additive number

2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Arash Ahadi ◽  
Ali Dehghan

International audience An <i>additive labeling</i> of a graph $G$ is a function $\ell :V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices $v$ and $u$ of $G$, $\Sigma_{w \sim v} \ell (w) \neq \Sigma_{w \sim u} \ell (w)$ ($x \sim y$ means that $x$ is joined to $y$). The additive number of $G$, denoted by $\eta (G)$, is the minimum number $k$ such that $G$ has a additive labeling $\ell : V(G) \rightarrow \mathbb{N}_k$. The additive choosability of a graph $G$, denoted by $\eta_\ell (G)$, is the smallest number $k$ such that $G$ has an additive labeling for any assignment of lists of size $k$ to the vertices of $G$, such that the label of each vertex belongs to its own list. Seamone in his PhD thesis conjectured that for every graph $G$, $\eta(G)= \eta_\ell (G)$. We give a negative answer to this conjecture and we show that for every $k$ there is a graph $G$ such that $\eta_\ell (G) - \eta(G) \geq k$. A $(0,1)$-<i>additive labeling</i> of a graph $G$ is a function $\ell :V(G) \rightarrow \{0,1 \}$, such that for every two adjacent vertices $v$ and $u$ of $G$, $\Sigma_{w \sim v} \ell (w) \neq \Sigma_{w \sim u} \ell (w)$. A graph may lack any $(0,1)$-additive labeling. We show that it is NP-complete to decide whether a $(0,1)$-additive labeling exists for some families of graphs such as perfect graphs and planar triangle-free graphs. For a graph $G$ with some $(0,1)$-additive labelings, the $(0,1)$-additive number of $G$ is defined as $\sigma_1 (G) = \mathrm{min}_{\ell \in \Gamma} \Sigma_{v \in V (G)} \ell (v)$ where $\Gamma$ is the set of $(0,1)$-additive labelings of $G$. We prove that given a planar graph that admits a $(0,1)$-additive labeling, for all $\epsilon > 0$ , approximating the $(0,1)$-additive number within $n^{1-\epsilon}$ is NP-hard.

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Selma Djelloul ◽  
Mekkia Kouider

International audience We study in graphs properties related to fault-tolerance in case a node fails. A graph G is k-self-repairing, where k is a non-negative integer, if after the removal of any vertex no distance in the surviving graph increases by more than k. In the design of interconnection networks such graphs guarantee good fault-tolerance properties. We give upper and lower bounds on the minimum number of edges of a k-self-repairing graph for prescribed k and n, where n is the order of the graph. We prove that the problem of finding, in a k-self-repairing graph, a spanning k-self-repairing subgraph of minimum size is NP-Hard.


10.37236/1799 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Alastair Farrugia

Can the vertices of an arbitrary graph $G$ be partitioned into $A \cup B$, so that $G[A]$ is a line-graph and $G[B]$ is a forest? Can $G$ be partitioned into a planar graph and a perfect graph? The NP-completeness of these problems are special cases of our result: if ${\cal P}$ and ${\cal Q}$ are additive induced-hereditary graph properties, then $({\cal P}, {\cal Q})$-colouring is NP-hard, with the sole exception of graph $2$-colouring (the case where both ${\cal P}$ and ${\cal Q}$ are the set ${\cal O}$ of finite edgeless graphs). Moreover, $({\cal P}, {\cal Q})$-colouring is NP-complete iff ${\cal P}$- and ${\cal Q}$-recognition are both in NP. This completes the proof of a conjecture of Kratochvíl and Schiermeyer, various authors having already settled many sub-cases.


2014 ◽  
Vol Vol. 16 no. 3 (Analysis of Algorithms) ◽  
Author(s):  
Uéverton dos Santos Souza ◽  
Fábio Protti ◽  
Maise Silva

Analysis of Algorithms International audience Flood-it is a combinatorial game played on a colored graph G whose aim is to make the graph monochromatic using the minimum number of flooding moves, relatively to a fixed pivot. Free-Flood-it is a variant where the pivot can be freely chosen for each move of the game. The standard versions of Flood-it and Free-Flood-it are played on m ×n grids. In this paper we analyze the behavior of these games when played on other classes of graphs, such as d-boards, powers of cycles and circular grids. We describe polynomial time algorithms to play Flood-it on C2n (the second power of a cycle on n vertices), 2 ×n circular grids, and some types of d-boards (grids with a monochromatic column). We also show that Free-Flood-it is NP-hard on C2n and 2 ×n circular grids.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Olga Glebova ◽  
Yury Metelsky ◽  
Pavel Skums

Graph Theory International audience A Krausz (k,m)-partition of a graph G is a decomposition of G into cliques, such that any vertex belongs to at most k cliques and any two cliques have at most m vertices in common. The m-Krausz dimension kdimm(G) of the graph G is the minimum number k such that G has a Krausz (k,m)-partition. In particular, 1-Krausz dimension or simply Krausz dimension kdim(G) is a well-known graph-theoretical parameter. In this paper we prove that the problem "kdim(G)≤3" is polynomially solvable for chordal graphs, thus partially solving the open problem of P. Hlineny and J. Kratochvil. We solve another open problem of P. Hlineny and J. Kratochvil by proving that the problem of finding Krausz dimension is NP-hard for split graphs and complements of bipartite graphs. We show that the problem of finding m-Krausz dimension is NP-hard for every m≥1, but the problem "kdimm(G)≤k" is is fixed-parameter tractable when parameterized by k and m for (∞,1)-polar graphs. Moreover, the class of (∞,1)-polar graphs with kdimm(G)≤k is characterized by a finite list of forbidden induced subgraphs for every k,m≥1.


10.37236/2417 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Louis Esperet ◽  
Sylvain Gravier ◽  
Mickaël Montassier ◽  
Pascal Ochem ◽  
Aline Parreau

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring $c$ of a graph $G$ is said to be locally identifying, if for any adjacent vertices $u$ and $v$ with distinct closed neighborhoods, the sets of colors that appear in the closed neighborhood of $u$ and $v$, respectively, are distinct. Let $\chi_{\rm{lid}}(G)$ be the minimum number of colors used in a locally identifying vertex-coloring of $G$. In this paper, we give several bounds on $\chi_{\rm{lid}}$ for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether $\chi_{\rm{lid}}(G)=3$ for a subcubic bipartite graph $G$ with large girth is an NP-complete problem.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Vladimir E. Alekseev ◽  
Alastair Farrugia ◽  
Vadim V. Lozin

International audience For graph classes \wp_1,...,\wp_k, Generalized Graph Coloring is the problem of deciding whether the vertex set of a given graph G can be partitioned into subsets V_1,...,V_k so that V_j induces a graph in the class \wp_j (j=1,2,...,k). If \wp_1=...=\wp_k is the class of edgeless graphs, then this problem coincides with the standard vertex k-COLORABILITY, which is known to be NP-complete for any k≥ 3. Recently, this result has been generalized by showing that if all \wp_i's are additive hereditary, then the generalized graph coloring is NP-hard, with the only exception of bipartite graphs. Clearly, a similar result follows when all the \wp_i's are co-additive.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Sushmita Gupta ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
Meirav Zehavi

An input to the P OPULAR M ATCHING problem, in the roommates setting (as opposed to the marriage setting), consists of a graph G (not necessarily bipartite) where each vertex ranks its neighbors in strict order, known as its preference. In the P OPULAR M ATCHING problem the objective is to test whether there exists a matching M * such that there is no matching M where more vertices prefer their matched status in M (in terms of their preferences) over their matched status in M *. In this article, we settle the computational complexity of the P OPULAR M ATCHING problem in the roommates setting by showing that the problem is NP-complete. Thus, we resolve an open question that has been repeatedly and explicitly asked over the last decade.


Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


2010 ◽  
Vol 10 (1&2) ◽  
pp. 141-151
Author(s):  
S. Beigi

Although it is believed unlikely that $\NP$-hard problems admit efficient quantum algorithms, it has been shown that a quantum verifier can solve NP-complete problems given a "short" quantum proof; more precisely, NP\subseteq QMA_{\log}(2) where QMA_{\log}(2) denotes the class of quantum Merlin-Arthur games in which there are two unentangled provers who send two logarithmic size quantum witnesses to the verifier. The inclusion NP\subseteq QMA_{\log}(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur protocol for 3-coloring with perfect completeness and gap 1/24n^6. Moreover, Aaronson et al. have shown the above inclusion with a constant gap by considering $\widetilde{O}(\sqrt{n})$ witnesses of logarithmic size. However, we still do not know if QMA_{\log}(2) with a constant gap contains NP. In this paper, we show that 3-SAT admits a QMA_{\log}(2) protocol with the gap 1/n^{3+\epsilon}} for every constant \epsilon>0.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.


Sign in / Sign up

Export Citation Format

Share Document