scholarly journals Boyd-Maxwell ball packings

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Hao Chen ◽  
Jean-Philippe Labbé

International audience In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In fact, the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a geometric representation of a Coxeter group in Lorentz space, the set of limit directions of weights equals the set of limit roots.

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


2018 ◽  
Vol 103 (117) ◽  
pp. 129-146
Author(s):  
Emil Molnár ◽  
Jenő Szirmai

In n-dimensional hyperbolic space Hn (n > 2), there are three types of spheres (balls): the sphere, horosphere and hypersphere. If n = 2, 3 we know a universal upper bound of the ball packing densities, where each ball?s volume is related to the volume of the corresponding Dirichlet-Voronoi (D-V) cell. E.g., in H3 a densest (not unique) horoball packing is derived from the {3,3,6} Coxeter tiling consisting of ideal regular simplices T? reg with dihedral angles ?/3. The density of this packing is ??3 ? 0.85328 and this provides a very rough upper bound for the ball packing densities as well. However, there are no ?essential" results regarding the ?classical" ball packings with congruent balls, and for ball coverings either. The goal of this paper is to find the extremal ball arrangements in H3 with ?classical balls". We consider only periodic congruent ball arrangements (for simplicity) related to the generalized, so-called complete Coxeter orthoschemes and their extended groups. In Theorems 1.1 and 1.2 we formulate also conjectures for the densest ball packing with density 0.77147... and the loosest ball covering with density 1.36893..., respectively. Both are related with the extended Coxeter group (5,3,5) and the so-called hyperbolic football manifold. These facts can have important relations with fullerenes in crystallography.


2014 ◽  
Vol 66 (2) ◽  
pp. 323-353 ◽  
Author(s):  
Christophe Hohlweg ◽  
Jean-Philippe Labbé ◽  
Vivien Ripoll

AbstractLet W be an infinite Coxeter group. We initiate the study of the set E of limit points of “normalized” roots (representing the directions of the roots) of W. We show that E is contained in the isotropic cone Q of the bilinear form B associated with a geometric representation, and we illustrate this property with numerous examples and pictures in rank 3 and 4. We also define a natural geometric action of W on E, and then we exhibit a countable subset of E, formed by limit points for the dihedral reflection subgroups of W. We explain how this subset is built fromthe intersection with Q of the lines passing through two positive roots, and finally we establish that it is dense in E.


Author(s):  
George Maxwell

Let V be the vector space of translations of a finite dimensional real affine space. The principal aim of this paper is to study (generally non-Euclidean) space groups whose point groups K are ‘linear’ Coxeter groups in the sense of Vinberg (4). This involves the investigation of lattices Λ in V left invariant by K and the calculation of cohomology groups H1(K, V/Λ) (3). The first problem is solved by generalizing classical concepts of ‘bases’ of root systems and their ‘weights’, while the second is carried out completely in the case when the Coxeter graph Γ of K contains only edges marked by 3. An important part in the calculation of H1(K, V/Λ) is then played by certain subgraphs of Γ which are complete multipartite graphs. The only subgraphs of this kind which correspond to finite Coxeter groups are of type Al× … × A1, A2, A3 or D4. This may help to explain why, in our earlier work on space groups with finite Coxeter point groups (3), (2), components of r belonging to these types played a rather mysterious exceptional role.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Anne Schilling ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/0912.2212 International audience For any finite Coxeter group $W$, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on $W$. The construction of the biHecke monoid relies on the usual combinatorial model for the $0-Hecke$ algebra $H_0(W)$, that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each $w∈W$ a combinatorial module $T_w$ whose support is the interval $[1,w]_R$ in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset. Pour tout groupe de Coxeter fini $W$, nous définissons deux nouveaux objets : son ordre de coupures et son monoïde de Hecke double. L'ordre de coupures, construit au moyen d'une généralisation de la notion de bloc dans les matrices de permutations, est presque un treillis sur $W$. La construction du monoïde de Hecke double s'appuie sur le modèle combinatoire usuel de la $0-algèbre$ de Hecke $H_0(W)$, pour le groupe symétrique, l'algèbre (ou le monoïde) engendré par les opérateurs de tri par bulles élémentaires. Les auteurs ont introduit précédemment l'algèbre de Hecke-groupe, construite comme l'algèbre engendrée conjointement par les opérateurs de tri et d'anti-tri, et décrit sa théorie des représentations. Dans cet article, nous considérons le monoïde engendré par ces opérateurs. Nous montrons qu'il admet $|W|$ modules simples et projectifs. Afin de construire ses modules simples, nous introduisons pour tout $w∈W$ un module combinatoire $T_w$ dont le support est l'intervalle [$1,w]_R$ pour l'ordre faible droit. Ce module détermine une algèbre dont la théorie des représentations généralise celle de l'algèbre de Hecke groupe, en remplaçant la combinatoire des descentes par celle des blocs et de l'ordre de coupures.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience Let $(W,S)$ be an arbitrary Coxeter system. For each sequence $\omega =(\omega_1,\omega_2,\ldots) \in S^{\ast}$ in the generators we define a partial order― called the $\omega \mathsf{-sorting order}$ ―on the set of group elements $W_{\omega} \subseteq W$ that occur as finite subwords of $\omega$ . We show that the $\omega$-sorting order is a supersolvable join-distributive lattice and that it is strictly between the weak and strong Bruhat orders on the group. Moreover, the $\omega$-sorting order is a "maximal lattice'' in the sense that the addition of any collection of edges from the Bruhat order results in a nonlattice. Along the way we define a class of structures called $\mathsf{supersolvable}$ $\mathsf{antimatroids}$ and we show that these are equivalent to the class of supersolvable join-distributive lattices.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Aram Dermenjian ◽  
Christophe Hohlweg ◽  
Vincent Pilaud

International audience We investigate a poset structure that extends the weak order on a finite Coxeter group W to the set of all faces of the permutahedron of W. We call this order the facial weak order. We first provide two alternative characterizations of this poset: a first one, geometric, that generalizes the notion of inversion sets of roots, and a second one, combinatorial, that uses comparisons of the minimal and maximal length representatives of the cosets. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Bjo ̈rner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of its classes.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Saúl A. Blanco

International audience We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ is fully commutative. This allows us to give a combinatorial interpretation to the lowest-degree terms in the complete $\textbf{cd}$-index of $W$. Nous définissons un poset en utilisant le plus court chemin entre l'identité et le plus long mot de $W, w_0$, dans le graph de Bruhat du groupe finie Coxeter, $W$. Nous prouvons que ce poset est l'union de posets Boolean du même rang que la longueur absolute de $w_0$; ça signifie que tous les plus courts chemins, étiquetés par réflexions $t_1,\ldots, t_m$ sont totalement commutatives. Ça nous permet de donner une interprétation combinatoire aux termes avec le moindre grade dans le $\textbf{cd}$-index complet de $W$.


2019 ◽  
Vol 72 (4) ◽  
pp. 867-899
Author(s):  
Joël Gay ◽  
Vincent Pilaud

AbstractWe define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.


Sign in / Sign up

Export Citation Format

Share Document