scholarly journals Generalized Dyck tilings (Extended Abstract)

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Matthieu Josuat-Vergès ◽  
Jang Soo Kim

International audience Recently, Kenyon and Wilson introduced Dyck tilings, which are certain tilings of the region between two Dyck paths. The enumeration of Dyck tilings is related with hook formulas for forests and the combinatorics of Hermite polynomials. The first goal of this work is to give an alternative point of view on Dyck tilings by making use of the weak order and the Bruhat order on permutations. Then we introduce two natural generalizations: $k$-Dyck tilings and symmetric Dyck tilings. We are led to consider Stirling permutations, and define an analogue of the Bruhat order on them. We show that certain families of $k$-Dyck tilings are in bijection with intervals in this order. We enumerate symmetric Dyck tilings and show that certain families of symmetric Dyck tilings are in bijection with intervals in the weak order on signed permutations. Récemment, Kenyon et Wilson ont introduit les pavages de Dyck, qui sont des pavages de la région comprise entre deux chemins de Dyck. L’énumération des pavages de Dyck est reliée aux formules d’équerre sur les forêts et à la combinatoire des polynômes de Hermite. Le premier but de ce travail est de donner un point de vue alternatif sur les pavages de Dyck, en utilisant l’ordre faible et l’ordre de Bruhat sur les permutations. Nous introduisons ensuite deux généralisations naturelles: les $k$-pavages de Dyck et les pavages de Dyck symétriques. Nous sommes amenés àconsidérer les permutations de Stirling, et définissons un analogue de l’ordre de Bruhat. Nous montrons que certaines familles de $k$-pavages de Dyck sont en bijection avec des intervalles de cet ordre. Nous énumérons les pavages de Dyck symétriques et montrons que certaines familles de pavages de Dyck symétriques sont en bijection avec des intervalles de l’ordre faible sur les permutations signées.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Soojin Cho ◽  
Kyoungsuk Park

International audience Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$. De nombreuses statistiques importantes des permutations signées sont réalisées dans les tableaux de permutations ou ”bare” tableaux de type $B$ correspondants : les alignements, croisements et inversions des permutations signées sont réalisés dans les tableaux de permutations de type $B$ correspondants, et les cycles des permutations signées sont comprises dans les ”bare” tableaux de type $B$ correspondants. Cela nous mène à relier le nombre d’alignements et de croisements avec d’autres statistiques des permutations signées, et aussi de caractériser la relation de couverture dans l’ordre de Bruhat faible sur des systèmes de Coxeter de type $B$ en termes de tableaux de permutations de type $B$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento

International audience We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever$m\geq k>n$, any triangulations of $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1}\times\Delta_{n-1}$. Moreover, with an explicit construction, we prove that the bound $k>n$ is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory. Nous introduisons la triangulation par chemins de Dyck du produit cartésien de deux simplexes $\Delta_{n-1}\times\Delta_{n-1}$. Les simplexes maximaux de cette triangulation sont donnés par des chemins de Dyck, et cette construction se généralise de façon naturelle pour produire des triangulations $\Delta_{r\ n-1}\times\Delta_{n-1}$ qui utilisent des chemins de Dyck rationnels. Notre étude de la triangulation par chemins de Dyck est motivée par des problèmes de prolongement de triangulations partielles de produits de deux simplexes. On montre que $m\geq k>n$ alors toute triangulation de $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ se prolonge en une unique triangulation de $\Delta_{m-1}\times\Delta_{n-1}$. De plus, avec une construction explicite, nous montrons que la borne $k>n$ est optimale. Nous présentons aussi des interprétations de nos résultats dans le langage des matroïdes orientés tropicaux, qui sont analogues aux résultats classiques de la théorie des matroïdes orientés.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Luis Serrano ◽  
Christian Stump

International audience We exhibit a canonical connection between maximal $(0,1)$-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus a shellable sphere. In particular, this implies a positivity result for Schubert polynomials. For Ferrers shapes, we moreover construct a bijection to maximal fillings avoiding south-east chains of the same length which specializes to a bijection between $k$-triangulations of the $n$-gon and $k$-fans of Dyck paths. Using this, we translate a conjectured cyclic sieving phenomenon for $k$-triangulations with rotation to $k$-flagged tableaux with promotion. Nous décrivons un lien canonique entre les $(0,1)$-remplissages maximaux d'un polyomino-lune évitant les chaînes Nord-Est d'une longueur donnée, et les "pipe dreams'' réduits d'une certaine permutation. En suivant cette approche nous montrons que le complexe simplicial de tels remplissages maximaux est une sphère "vertex-decomposable'' et donc "shellable''. En particulier, cela entraîne un résultat de positivité sur les polynômes de Schubert. De plus, nous construisons, dans le cas des diagrammes de Ferrers, une bijection vers les remplissages maximaux évitant les chaînes Sud-Est de même longueur, qui se spécialise en une bijection entre les $k$-triangulations d'un $n$-gone et les $k$-faisceaux de chemins de Dyck. A l'aide de celle-ci, nous traduisons une instance conjecturale du phénomène de tamis cyclique pour les $k$-triangulations avec rotation dans le cadre des tableaux $k$-marqués avec promotion.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Myrto Kallipoliti ◽  
Henri Mühle

International audience In the first part of this article we present a realization of the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$ in terms of $m$-tuples of Dyck paths of height $n$, equipped with componentwise rotation order. For that, we define the $m$-cover poset $\mathcal{P}^{\langle m \rangle}$ of an arbitrary bounded poset $\mathcal{P}$, and show that the smallest lattice completion of the $m$-cover poset of the Tamari lattice $\mathcal{T}_n$ is isomorphic to the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$. A crucial tool for the proof of this isomorphism is a decomposition of $m$-Dyck paths into $m$-tuples of classical Dyck paths, which we call the strip-decomposition. Subsequently, we characterize the cases where the $m$-cover poset of an arbitrary poset is a lattice. Finally, we show that the $m$-cover poset of the Cambrian lattice of the dihedral group is a trim lattice with cardinality equal to the generalized Fuss-Catalan number of the dihedral group. Dans la première partie de cet article nous présentons une réalisation du treillis $m$ -Tamari $\mathcal{T}_n^{(m)}$ à l’aide de $m$-uplets de chemins de Dyck de hauteur $n$, équipés de l’ordre de rotation composante par composante. Pour cela, nous définissons le poset de $m$-couverture $\mathcal{P}^{\langle m \rangle}$ d’un poset borné quelconque $\mathcal{P}$, et montrons que la plus petite complétion en treillis du poset de $m$-couverture du treillis de Tamari $\mathcal{T}_n$ est isomorphe au treillis $m$-Tamari $\mathcal{T}_n^{(m)}$. Unoutil crucial pour la preuve de cet isomorphisme est une décomposition des chemins $m$-Dyck en $m$-uplets de chemins de Dyck usuels, que nous appelons la décomposition en bandes. Par la suite, nous caractérisons les cas où le poset de $m$-couverture d’un poset donné est un treillis. Enfin nous montrons que le poset de $m$-couverture du treillis Cambrien du groupe diédral est un treillis svelte de cardinalité le nombre généralisé de Fuss-Catalan du groupe diédral.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mark Dukes ◽  
Yvan Le Borgne

International audience We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ rectangle. Other combinatorial structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of set partitions), and (2+2)-free posets. A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram polyominoes. We define a collection of polynomials that we call $q,t$-Narayana polynomials, the generating functions of the bistatistic $(\mathsf{area ,parabounce} )$ on the set of parallelogram polyominoes, akin to Haglund's $(\mathsf{area ,hagbounce} )$ bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram polyominoes. This is one answer to their question concerning extensions to other combinatorial objects. We conjecture the $q,t$-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We also show a relationship between the $q,t$-Catalan polynomials and our bistatistic $(\mathsf{area ,parabounce}) $on a subset of parallelogram polyominoes. Pour le modèle du tas de sable sur un graphe $K_m,n$ biparti complet, on donne une description des configurations rècurrentes à l'aide d'une bijection avec des polyominos parallèlogrammes dècorès de rectangle englobant $m×n$. D'autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple les matrices de bicomposition et les ordres partiels évitant le motif (2+2). Un processus d'éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le polyomino parallèlogramme associè. Nous définissons une famille de polynômes, baptisée de $q,t$-Narayana, à travers la distribution d'une paire de statistique $(\mathsf{aire, poidscheminbondissant})$ sur les polyominos parallélogrammes similaire à celle de Haglund définissant les polynômes de $q,t$-Catalan sur les chemins de Dyck. Ainsi nous étendons une paire de statistique de Egge et d'autres à l'ensemble des polynominos parallélogrammes. Cela répond à l'une de leur question sur des généralistations à d'autres objets combinatoires. Nous conjecturons que les polynômes de $q,t$-Narayana sont symétriques et discutons des preuves de plusieurs cas particuliers. Nous montrons ègalement une relation avec les polynômes de $q,t$-Catalan en restreignant notre paire de statistique à un sous-ensemble des polyominos parallélogrammes.


Author(s):  
Ahmed Marchane ◽  
Lionel Jarlan ◽  
Lahoucine Hanich ◽  
Abdelghani Boudhar
Keyword(s):  

Dans le Sud de la Méditerranée, de nombreux bassins versants sont caractérisés par un fonctionnement pluvio-nival où une partie des ressources en eau est stockée en hiver sous forme de neige en montagne alors que la zone de consommation se situe en plaine souvent dominée par l'agriculture irriguée. L'objectif de ce travail est double : (1) évaluer les capacités de la télédétection visible/proche infrarouge pour caractériser la variabilité interannuelle de l'enneigement sur l'Atlas marocain comme alternative aux données in situ éparses sur ces zones difficiles d'accès ; (2) identifier les déterminants climatiques qui gouvernent cette variabilité. Dans cet objectif, nous avons analysé plus de 10 ans d'acquisitions journalières issues du capteur MODIS (produits MOD10A1). Dans un premier temps, nous nous sommes attachés à corriger les produits bruts contaminés par la couverture nuageuse à l'aide de méthodes de filtrage basées sur le voisinage spatial et temporel et nous les avons confrontées à des mesures d'équivalent en eau de la neige mesurée à la station nivale de l'Oukamaïden, près de Marrakech, entre 2009 et 2011. Dans un deuxième temps, nous avons caractérisé la variabilité interannuelle à l'aide d'indicateurs saisonniers: enneigement maximum et moyen, et date des premières neiges. Enfin, nous avons mis en évidence une relation significative entre la valeur de l'oscillation Nord Atlantique (ONA) moyenne sur le mois de mars et l'enneigement maximum. Nous montrons également qu'il existe une relation significative entre les anomalies de températures de surface de l'Atlantique équatorial et tropical à la fin de l'été et l'enneigement maximum rencontré sur l'Atlas marocain l'hiver suivant. Ces résultats ouvrent des perspectives pour la prévision saisonnière de l'enneigement sur la région.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


Sign in / Sign up

Export Citation Format

Share Document