scholarly journals Genomic Tableaux and Combinatorial $K$-Theory

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Oliver Pechenik ◽  
Alexander Yong

International audience We introduce genomic tableaux, with applications to Schubert calculus. We report a combinatorial rule for structure coefficients in the torus-equivariant $K$-theory of Grassmannians for the basis of Schubert structure sheaves. This rule is positive in the sense of [Anderson-Griffeth-Miller ’11]. We thereby deduce an earlier conjecture of [Thomas-Yong ’13] for the coefficients. Moreover, our rule specializes to give a new Schubert calculus rule in the (non-equivariant) $K$-theory of Grassmannians. From this perspective, we also obtain a new rule for $K$-theoretic Schubert structure constants of maximal orthogonal Grassmannians, and give conjectural bounds on such constants for Lagrangian Grassmannians. Nous introduisons la notion de tableau génomique, pour l’appliquer au calcul de Schubert. Nous énonçons une règle combinatoire pour les coefficients de structure de la $K$-théorie tore-équivariante des grassmanniennes, dans la base définie par les classes des faisceaux structuraux des variétés de Schubert. Cette règle est positive au sens de [Anderson-Griffeth-Miller ’11]. Nous en déduisons une conjecture de [Thomas-Yong ’13]. De plus, notre règle se spécialise en une règle nouvelle pour le calcul de Schubert dans la $K$-théorie (non équivariante) des grassmanniennes. Nous obtenons également une nouvelle règle pour les coefficients de structure de la $K$-théorie des grassmanniennes orthogonales maximales dans la base de Schubert, et nous conjecturons certaines bornes pour ces coefficients dans le cas des grassmanniennes lagrangiennes.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Kirill Zainoulline

International audience An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We usethese polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective $K$-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra. Un résultat combinatoire important dans le calcul de Schubert pour la cohomologie et la $K$-théorie équivariante est représenté par les formules de Billey et Graham-Willems pour la localisation des classes de Schubert aux points fixes du tore. Ces formules sont uniformes pour tous les types de Lie, et sont basés sur le concept d’un polynôme de racines. Nous définissons les polynômes formels de racines associées à une loi arbitraire de groupe formel (et donc à une théorie de cohomologie généralisée). Nous utilisons ces polynômes pour simplifier les preuves de Billey et Graham-Willems, et aussi pour généraliser leurs résultats à la $K$-théorie connective et la cohomologie elliptique. Un autre résultat concerne la définition d’une base de Schubert dans cohomologie elliptique (c’est à dire, des classes indépendantes d’un mot réduit), en utilisant la base de Kazhdan-Lusztig de l’algèbre de Hecke correspondant.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Allen Knutson ◽  
Mathias Lederer

International audience Define the <b>interval rank</b> $r_[i,j] : Gr_k(\mathbb C^n) →\mathbb{N}$ of a k-plane V as the dimension of the orthogonal projection $π _[i,j](V)$ of V to the $(j-i+1)$-dimensional subspace that uses the coordinates $i,i+1,\ldots,j$. By measuring all these ranks, we define the <b>interval rank stratification</b> of the Grassmannian $Gr_k(\mathbb C^n)$. It is finer than the Schubert and Richardson stratifications, and coarser than the positroid stratification studied by Lusztig, Postnikov, and others, so we call the closures of these strata <b>interval positroid varieties</b>. We connect Vakil's "geometric Littlewood-Richardson rule", in which he computed the homology classes of Richardson varieties (Schubert varieties intersected with opposite Schubert varieties), to Erd&odblac;s-Ko-Rado shifting, and show that all of Vakil's varieties are interval positroid varieties. We build on his work in three ways: (1) we extend it to arbitrary interval positroid varieties, (2) we use it to compute in equivariant K-theory, not just homology, and (3) we simplify Vakil's (2+1)-dimensional "checker games" to 2-dimensional diagrams we call "IP pipe dreams". The ring Symm of symmetric functions and its basis of Schur functions is well-known to be very closely related to the ring $\bigoplus_a,b H_*(Gr_a(\mathbb{C}^{(a+b)})$ and its basis of Schubert classes. We extend the latter ring to equivariant K-theory (with respect to a circle action on each $\mathbb{C}^{(a+b)}$, and compute the structure constants of this two-parameter deformation of Symm using the interval positroid technology above.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Sabine Beil

International audience In this work triangular puzzles that are composed of unit triangles with labelled edges are considered. To be more precise, the labelled unit triangles that we allow are on the one hand the puzzle pieces that compute Schubert calculus and on the other hand the flipped K-theory puzzle piece. The motivation for studying such puzzles comes from the fact that they correspond to a class of oriented triangular fully packed loop configurations. The main result that is presented is an expression for the number of these puzzles with a fixed boundary in terms of Littlewood- Richardson coefficients.


2016 ◽  
Vol 144 ◽  
pp. 306-325 ◽  
Author(s):  
Huilan Li ◽  
Jennifer Morse ◽  
Patrick Shields
Keyword(s):  

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Markus Kuba ◽  
Alois Panholzer

International audience We study two enumeration problems for $\textit{up-down alternating trees}$, i.e., rooted labelled trees $T$, where the labels $ v_1, v_2, v_3, \ldots$ on every path starting at the root of $T$ satisfy $v_1 < v_2 > v_3 < v_4 > \cdots$. First we consider various tree families of interest in combinatorics (such as unordered, ordered, $d$-ary and Motzkin trees) and study the number $T_n$ of different up-down alternating labelled trees of size $n$. We obtain for all tree families considered an implicit characterization of the exponential generating function $T(z)$ leading to asymptotic results of the coefficients $T_n$ for various tree families. Second we consider the particular family of up-down alternating labelled ordered trees and study the influence of such an alternating labelling to the average shape of the trees by analyzing the parameters $\textit{label of the root node}$, $\textit{degree of the root node}$ and $\textit{depth of a random node}$ in a random tree of size $n$. This leads to exact enumeration results and limiting distribution results. Nous étudions deux problèmes de dénombrement d'$\textit{arbres alternés haut-bas}$ : par définition, ce sont des arbres munis d'une racine et tels que, pour tout chemin partant de la racine, les valeurs $v_1,v_2,v_3,\ldots$ associées aux nœuds du chemin satisfont la chaîne d'inégalités $v_1 < v_2 > v_3 < v_4 > \cdots$. D'une part, nous considérons diverses familles d'arbres intéressantes du point de vue de l'analyse combinatoire (comme les arbres de Motzkin, les arbres non ordonnés, ordonnés et $d$-aires) et nous étudions pour chaque famille le nombre total $T_n$ d'arbres alternés haut-bas de taille $n$. Nous obtenons pour toutes les familles d'arbres considérées une caractérisation implicite de la fonction génératrice exponentielle $T(z)$. Cette caractérisation nous renseigne sur le comportement asymptotique des coefficients $T_n$ de plusieurs familles d'arbres. D'autre part, nous examinons le cas particulier de la famille des arbres ordonnés : nous étudions l'influence de l'étiquetage alterné haut-bas sur l'allure générale de ces arbres en analysant trois paramètres dans un arbre aléatoire (valeur de la racine, degré de la racine et profondeur d'un nœud aléatoire). Nous obtenons alors des résultats en terme de distribution limite, mais aussi de dénombrement exact.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher J. Hillar ◽  
Lionel Levine ◽  
Darren Rhea

International audience We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals. Nous étudions des équations dans les groupes $G$ avec les $m$-th racines uniques pour chaque nombre entier positif m. Une équation de mot dans deux lettres est une expression de la forme $w(X, A) = B$, où $w$ est un mot fini dans l'alphabet ${X, A}$. Nous pensons $A, B ∈G$ en tant que coefficients fixes, et $X ∈G$ en tant que inconnu. Certaines équations de mot, telles que $XAXAX=B$, ont des solutions en termes de radicaux: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, alors que d'autres tel que $X^2 A X = B$ ne font pas. Nous obtenons les familles infinies d'abord connues des équations de mot non solubles par des radicaux, et conjecturons une classification complété. Á un mot $w$ nous associons un polynôme $P_w ∈ℤ[x, y]$ dans deux variables de permutation, qui factorise toutes les fois que $w$ est une composition de plus petits mots. Nous montrons que si $P_w(x^2, y^2)$ a un facteur absolument irréductible dans $ℤ[x, y]$, alors l'équation $w(X, A)=B$ n'est pas soluble en termes de radicaux.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Marie Albenque ◽  
Jérémie Bouttier

International audience We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Ekaterina A. Vassilieva

International audience We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size $N+1$. We present the first combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover, we obtain a finer result, which takes the type of the permutations into account. Nous étudions le nombre de permutations $\beta$ de $[N]$ avec $m$ cycles telles que $(1 2 \ldots N) \beta^{-1}$ a un seul cycle. Ces nombres apparaissent en tant que coefficients des monômes linéaires des polynômes de Kerov et de Stanley. À l'aide de méthodes algébriques, D. Zagier a trouvé une connexion inattendue avec les nombres de Stirling de taille $N+1$. Nous présentons ici la première preuve combinatoire de son résultat, en introduisant une nouvelle bijection entre des cartes partitionnées et des arbres épineux. De plus, nous obtenons un résultat plus fin, prenant en compte le type des permutations.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


Sign in / Sign up

Export Citation Format

Share Document