scholarly journals Non-commutative Frobenius characteristic of generalized parking functions : Application to enumeration

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jean-Baptiste Priez ◽  
Aladin Virmaux

International audience We give a recursive definition of generalized parking functions that allows them to be viewed as a species. From there we compute a non-commutative characteristic of the generalized parking function module and deduce some enumeration formulas of structures and isomorphism types. We give as well an interpretation in several bases of non commutative symmetric functions. Finally, we investigate an inclusion-exclusion formula given by Kung and Yan. Nous donnons une définition récursive des fonctions de parking généralisées nous permettant de munir ces dernières d’une structure d’espèce. Nous utilisons ce point de vu pour donner une caractéristique de Frobenius non-commutative du module des fonctions de parking généralisées que nous appliquons afin de donner de nombreuses formules d’énumération de structures et de type d’isomorphismes, ainsi qu’une interprétation dans plusieurs bases des fonctions symétriques non commutatives. Enfin, nousétudions une formule d’inclusion-exclusion provenant de Kung et Yan.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Angela Hicks ◽  
Yeonkyung Kim

International audience In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, "ndinv'', on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, for $\Delta_{h_m}$ a Macdonald eigenoperator, $C_{p_i}$ a modified Hall-Littlewood operator and $(p_1,p_2,\dots ,p_k)$ a composition of n. Using their new statistics, they are able to give a new interpretation for the polynomial $\langle\nabla e_n, h_j h_n-j\rangle$ as a q,t numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki. Dans un travail récent Duane, Garsia et Zabrocki ont introduit une nouvelle statistique, "ndinv'' pour une famille de Fonctions Parking. Ce "ndinv" découle d'une récurrence satisfaite par le polynôme $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, oú $\Delta_{h_m}$ est un opérateur linéaire avec fonctions propres les polynômes de Macdonald, les $C_{p_i}$ sont des opérateurs de Hall-Littlewood modifiés et $(p_1,p_2,\dots ,p_n)$ est un vecteur à composantes entières positives. Par moyen de cette statistique, ils ont réussi à donner une nouvelle interprétation combinatoire au polynôme $\langle\nabla e_n, h_j h_n-j\rangle$ on remplaçant "dinv'" par "ndinv". Rappelons nous que la conjecture "Shuffle"' exprime ce même polynôme comme somme pondérée de Fonctions Parking avec poids t à la "aire'" est q au "dinv". Puisque il donnent une définition récursive du "ndinv" il posent le problème de l'obtenir d'une façon directe. On rèsout se problème en donnant une formule explicite qui permet de calculer directement le "ndinv" à la manière de la formule classique du "dinv". Dans cet article on décrit le travail qu'on a fait pour construire cette formule et on démontre que nôtre formule donne le même "ndinv" récursivement construit par Duane, Garsia et Zabrocki.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Heesung Shin ◽  
Jiang Zeng

International audience For a fixed sequence of $n$ positive integers $(a,\bar{b}) := (a, b, b,\ldots, b)$, an $(a,\bar{b})$-parking function of length $n$ is a sequence $(p_1, p_2, \ldots, p_n)$ of positive integers whose nondecreasing rearrangement $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfies $q_i \leq a+(i-1)b$ for any $i=1,\ldots, n$. A $(a,\bar{b})$-forest on $n$-set is a rooted vertex-colored forests on $n$-set whose roots are colored with the colors $0, 1, \ldots, a-1$ and the other vertices are colored with the colors $0, 1, \ldots, b-1$. In this paper, we construct a bijection between $(bc,\bar{b})$-parking functions of length $n$ and $(bc,\bar{b})$-forests on $n$-set with some interesting properties. As applications, we obtain a generalization of Gessel and Seo's result about $(c,\bar{1})$-parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] and a refinement of Yan's identity [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] between an inversion enumerator for $(bc,\bar{b})$-forests and a complement enumerator for $(bc,\bar{b})$-parking functions. Soit $(a,\bar{b}) := (a, b, b,\ldots, b)$ une suite d'entiers positifs. Une $(a,\bar{b})$-fonction de parking est une suite $(p_1, p_2, \ldots, p_n)$ d'entiers positives telle que son réarrangement non décroissant $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfait $q_i \leq a+(i-1)b$ pour tout $i=1,\ldots, n$. Une $(a,\bar{b})$-forêt enracinée sur un $n$-ensemble est une forêt enracinée dont les racines sont colorées avec les couleurs $0, 1, \ldots, a-1$ et les autres sommets sont colorés avec les couleurs $0, 1, \ldots, b-1$. Dans cet article, on construit une bijection entre $(bc,\bar{b})$-fonctions de parking et $(bc,\bar{b})$-forêts avec des des propriétés intéressantes. Comme applications, on obtient une généralisation d'un résultat de Gessel-Seo sur $(c,\bar{1})$-fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] et une extension de l'identité de Yan [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] entre l'énumérateur d'inversion de $(bc,\bar{b})$-forêts et l'énumérateur complémentaire de $(bc,\bar{b})$-fonctions de parking.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Anne Schilling

International audience The Ram–Yip formula for Macdonald polynomials (at t=0) provides a statistic which we call charge. In types ${A}$ and ${C}$ it can be defined on tensor products of Kashiwara–Nakashima single column crystals. In this paper we show that the charge is equal to the (negative of the) energy function on affine crystals. The algorithm for computing charge is much simpler than the recursive definition of energy in terms of the combinatorial ${R}$-matrix. La formule de Ram et Yip pour les polynômes de Macdonald (à t = 0) fournit une statistique que nous appelons la charge. Dans les types ${A}$ et ${C}$, elle peut être définie sur les produits tensoriels des cristaux pour les colonnes de Kashiwara–Nakashima. Dans ce papier, nous montrons que la charge est égale à (l'opposé de) la fonction d'énergie sur cristaux affines. L'algorithme pour calculer la charge est bien plus simple que la définition récursive de l'énergie en fonction de la ${R}$-matrice combinatoire.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Yeonkyung Kim

International audience In this article, we show how the compositional refinement of the ``Shuffle Conjecture'' due to Jim Haglund, Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia Nabla operator as a weighted sum of a suitable collection of ``Parking Functions.'' The validity of these expressions is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Austin Roberts

International audience This paper uses the theory of dual equivalence graphs to give explicit Schur expansions to several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram $δ ⊂ \mathbb{Z} \times \mathbb{Z}$, written as $\widetilde H_δ (X;q,t)$ and $\widetilde P_δ (X;t)$, respectively. We then give an explicit Schur expansion of $\widetilde P_δ (X;t)$ as a sum over a subset of the Yamanouchi words, as opposed to the expansion using the charge statistic given in 1978 by Lascoux and Schüztenberger. We further define the symmetric function $R_γ ,δ (X)$ as a refinement of $\widetilde P_δ$ and similarly describe its Schur expansion. We then analysize $R_γ ,δ (X)$ to determine the leading term of its Schur expansion. To gain these results, we associate each Macdonald polynomial with a signed colored graph $\mathcal{H}_δ$ . In the case where a subgraph of $\mathcal{H}_δ$ is a dual equivalence graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Olivier Mallet

International audience In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far. Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour les nombres de Genocchi. Ce nouveau modèle est celui des k-formes irréductibles, qui repose sur de solides bases algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de la théorie des nombres de Genocchi. En particulier, le q-analogue naturel venant du degré des fonctions symétriques semble inconnu jusqu'ici.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


10.37236/1900 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob Jonsson

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.


2002 ◽  
Vol 9 (14) ◽  
Author(s):  
Ulrich Berger ◽  
Paulo B. Oliva

We introduce a variant of Spector's bar recursion (called "modified bar recursion'') in finite types to give a realizability interpretation of the classical axiom of countable choice allowing for the extraction of witnesses from proofs of Sigma_1 formulas in classical analysis. As a second application of modified bar recursion we present a bar recursive definition of the fan functional. Moreover, we show that modified bar recursion exists in M (the model of strongly majorizable functionals) and is not S1-S9 computable in C (the model of total functionals). Finally, we show that modified bar recursion defines Spector's bar recursion primitive recursively.


Sign in / Sign up

Export Citation Format

Share Document