scholarly journals Combinatorics of k-shapes and Genocchi numbers

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Olivier Mallet

International audience In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far. Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour les nombres de Genocchi. Ce nouveau modèle est celui des k-formes irréductibles, qui repose sur de solides bases algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de la théorie des nombres de Genocchi. En particulier, le q-analogue naturel venant du degré des fonctions symétriques semble inconnu jusqu'ici.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Chris Berg

International audience In this paper, we introduce a new model of the crystal $B(\Lambda _0)$ of $\widehat{\mathfrak{sl}_{\ell}}$. We briefly describe some of the properties of this crystal and compare it to the combinatorial model of Misra and Miwa. Dans cet article on propose un nouveau modèle du cristal $B(\Lambda _0)$ de \$\widehat{\mathfrak{sl}_{\ell}}$. On décrit brièvement les propriétés du cristal et on le compare avec le modèle combinatoire de Misra et Miwa.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


2009 ◽  
Vol 15 (1) ◽  
pp. 105-119 ◽  
Author(s):  
Florent Hivert ◽  
Jean-Christophe Novelli ◽  
Lenny Tevlin ◽  
Jean-Yves Thibon

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Carolina Benedetti ◽  
Joshua Hallam ◽  
John Machacek

International audience We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanley’s $(-1)$-color theorem. Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans multiplicité pour son antipode. On obtient ensuite une famille d'algèbres de Hopf combinatoires en définissant une famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donnent lieu à des fonctions symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-$f$. Nousallons également utiliser des caractères pour donner une généralisation du théorème $(-1)$ de Stanley.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph. In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of these hypergraphs by finding a combinatorial interpretation for $f^{-1}(x)$. We conjecture that the chromatic symmetric functions arising in this way are Schur-positive. Si $f(x)$ est une série entière inversible, nous pouvons former la fonction symétrique $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières $f(x)$ qui sont séries génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à $f^{-1}(x)$, ce qui nous permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière sont Schur-positives.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maciej Dolega ◽  
Valentin Féray

International audience Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series ψ(x, y, z; t, 1 + β) that might be interpreted as a continuous deformation of the rooted hypermap generating series. They made the following conjecture: coefficients of ψ(x, y, z; t, 1+β) are polynomials in β with nonnegative integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients of ψ(x, y, z; t, 1 + β) are polynomials in β with rational coefficients. Until now, it was only known that they are rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when α → 0 that may be of independent interest.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Piotr Sniady

International audience In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments on irreducible character values of symmetric groups. The existence of such formulas could have been predicted from the work of M. Lassalle who formulated two positivity conjectures for Jack characters, which we prove in the special case of zonal polynomials. Dans cet article, nous établissons une nouvelle formule combinatoire pour les polynômes zonaux en fonction des fonctions puissance. La preuve utilise le principe de l'involution changeant les signes. Nous en déduisons des formules pour les caractères zonaux, qui sont définis comme les coefficients des polynômes zonaux écrits sur la base des fonctions puissance, normalisés de manière appropriée. Ces formules sont des analogues de développements récents sur les caractères du groupe symétrique. L'existence de telles formules aurait pu être prédite à partir des travaux de M. Lassalle, qui a proposé deux conjectures de positivité sur les caractères de Jack, que nous prouvons dans le cas particulier des polynômes zonaux.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the explicit computation of generating series for the connection coefficients of two commutative subalgebras of the group algebra of the symmetric group, the class algebra and the double coset algebra. As shown by Hanlon, Stanley and Stembridge (1992), these series gives the spectral distribution of some random matrices that are of interest to statisticians. Morales and Vassilieva (2009, 2011) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps on (locally) orientable surfaces and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type $[a,b,1^{n-a-b}]$. Cet article est dédié au calcul explicite des séries génératrices des constantes de structure de deux sous-algèbres commutatives de l'algèbre de groupe du groupe symétrique, l'algèbre de classes et l'algèbre de double classe latérale. Tel que montrè par Hanlon, Stanley and Stembridge (1992), ces séries déterminent la distribution spectrale de certaines matrices aléatoires importantes en statistique. Morales et Vassilieva (2009, 2011) ont trouvè des formules explicites pour ces séries génératrices en termes des monômes symétriques en introduisant une bijection entre les hypercartes partitionnées sur des surfaces (localement) orientables et certains arbres et forêts décorées. Grâce à des moyens purement algébriques, nous retrouvons la formule pour l'algèbre de classe et déterminons une nouvelle formule plus simple pour l'algèbre de double classe latérale. En tant que point saillant de notre démonstration nous calculons une formulation explicite pour les polynômes zonaux indexés par des partitions de type $[a,b,1^{n-a-b}]$.


Sign in / Sign up

Export Citation Format

Share Document