scholarly journals Constructing a sequence of random walks strongly converging to Brownian motion

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Philippe Marchal

International audience We give an algorithm which constructs recursively a sequence of simple random walks on $\mathbb{Z}$ converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized pseudobridge.

2013 ◽  
Vol 50 (2) ◽  
pp. 266-279
Author(s):  
Hatem Hajri

Csáki and Vincze have defined in 1961 a discrete transformation T which applies to simple random walks and is measure preserving. In this paper, we are interested in ergodic and asymptotic properties of T. We prove that T is exact: ∩k≧1σ(Tk(S)) is trivial for each simple random walk S and give a precise description of the lost information at each step k. We then show that, in a suitable scaling limit, all iterations of T “converge” to the corresponding iterations of the continuous Lévy transform of Brownian motion.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Serguei Yu. Popov

International audience We review some recent results for a system of simple random walks on graphs, known as \emphfrog model. Also, we discuss several modifications of this model, and present a few open problems. A simple version of the frog model can be described as follows: There are active and sleeping particles living on some graph. Each active particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1-p. When an active particle hits a sleeping particle, the latter becomes active.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2007 ◽  
Vol 44 (04) ◽  
pp. 1056-1067 ◽  
Author(s):  
Andreas Lindell ◽  
Lars Holst

Expressions for the joint distribution of the longest and second longest excursions as well as the marginal distributions of the three longest excursions in the Brownian bridge are obtained. The method, which primarily makes use of the weak convergence of the random walk to the Brownian motion, principally gives the possibility to obtain any desired joint or marginal distribution. Numerical illustrations of the results are also given.


2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2014 ◽  
Vol 51 (4) ◽  
pp. 1065-1080 ◽  
Author(s):  
Massimo Campanino ◽  
Dimitri Petritis

Simple random walks on a partially directed version ofZ2are considered. More precisely, vertical edges between neighbouring vertices ofZ2can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.


2013 ◽  
Vol 50 (2) ◽  
pp. 557-575
Author(s):  
Michael R. Tehranchi

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that Xt=Wt+o(t1/4+ ε) as t↑∞ for any ε> 0.


Sign in / Sign up

Export Citation Format

Share Document