scholarly journals On bipartite powers of bigraphs

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Yoshio Okamoto ◽  
Yota Otachi ◽  
Ryuhei Uehara

Graph Theory International audience The notion of graph powers is a well-studied topic in graph theory and its applications. In this paper, we investigate a bipartite analogue of graph powers, which we call bipartite powers of bigraphs. We show that the classes of bipartite permutation graphs and interval bigraphs are closed under taking bipartite power. We also show that the problem of recognizing bipartite powers is NP-complete in general.

2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Oleg Duginov

Graph Theory International audience Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs and remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.


2012 ◽  
Vol 04 (03) ◽  
pp. 1250039
Author(s):  
MASASHI KIYOMI ◽  
TOSHIKI SAITOH ◽  
RYUHEI UEHARA

The graph reconstruction conjecture is a long-standing open problem in graph theory. The conjecture has been verified for all graphs with at most 11 vertices. Further, the conjecture has been verified for regular graphs, trees, disconnected graphs, unit interval graphs, separable graphs with no pendant vertex, outer-planar graphs, and unicyclic graphs. We extend the list of graph classes for which the conjecture holds. We give a proof that bipartite permutation graphs are reconstructible.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Peter J. Dukes ◽  
Steve Lowdon ◽  
Gary Macgillivray

Graph Theory International audience We study partitions of the vertex set of a given graph into cells that each induce a subgraph in a given family, and for which edges can have ends in different cells only when those cells correspond to adjacent vertices of a fixed template graph H. For triangle-free templates, a general collection of graph families for which the partitioning problem can be solved in polynomial time is described. For templates with a triangle, the problem is in some cases shown to be NP-complete.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


Author(s):  
Subhabrata Paul ◽  
Dinabandhu Pradhan ◽  
Shaily Verma

Sign in / Sign up

Export Citation Format

Share Document