scholarly journals Strange Expectations and Simultaneous Cores

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Marko Thiel ◽  
Nathan Williams

International audience Let gcd(a, b) = 1. J. Olsson and D. Stanton proved that the maximum number of boxes in a simultaneous (a, b)-core is (a2 −1)(b2 −1) 24, and showed that this maximum is achieved by a unique core. P. Johnson combined Ehrhart theory with the polynomial method to prove D. Armstrong's conjecture that the expected number of boxes in a simultaneous (a, b)-core is (a−1)(b−1)(a+b+1) 24. We apply P. Johnson's method to compute the variance and third moment. By extending the definitions of “simultaneous cores” and “number of boxes” to affine Weyl groups, we give uniform generalizations of these formulae to simply-laced affine types. We further explain the appearance of the number 24 using the “strange formula” of H. Freudenthal and H. de Vries.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type $\widetilde{B}_n, \widetilde {C}_n$ and $\widetilde {D}_n$ and determine the generating functions of their distributions. This paper is inspired by one of Clark and Ehrenborg (2011) in which the authors introduce the excedance statistic for the group of affine permutations and ask if this statistic can be defined for other affine groups. Basée sur la notion des excédances colorés et absolu introduits par Bagno and Garber, nous donnons un analogue des polynômes des dérangements. Nous obtenons quelques propriétés de base de ces polynômes. En outre, nous définissons une excédance statistique pour le groupes de Weyl affines de type $\widetilde{B}_n, \widetilde {C}_n$ et $\widetilde {D}_n$ et nous déterminons les fonctions génératrices de leurs distributions. Cet article est inspirè d'un article de Clark et Ehrenborg (2011) dans lequel les auteurs introduisent les excedances pour le groupe des permutations affine et demander si cette statistique peut être éèfinie pour les autres groupes affines.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2014 ◽  
Vol 41 (4) ◽  
pp. 911-948 ◽  
Author(s):  
Elizabeth Beazley ◽  
Margaret Nichols ◽  
Min Hae Park ◽  
XiaoLin Shi ◽  
Alexander Youcis

10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2011 ◽  
Vol 39 (2) ◽  
pp. 730-749 ◽  
Author(s):  
Saeid Azam ◽  
Valiollah Shahsanaei

2018 ◽  
Vol 3 (3) ◽  
pp. 491-522
Author(s):  
Graham Niblo ◽  
Roger Plymen ◽  
Nick Wright

2019 ◽  
Vol 351 ◽  
pp. 897-946 ◽  
Author(s):  
Boris Dubrovin ◽  
Ian A.B. Strachan ◽  
Youjin Zhang ◽  
Dafeng Zuo

Sign in / Sign up

Export Citation Format

Share Document