scholarly journals Rational Dyck Paths in the Non Relatively Prime Case

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Eugene Gorsky ◽  
Mikhail Mazin ◽  
Monica Vazirani

International audience We study the relationship between rational slope Dyck paths and invariant subsets in Z, extending the work of the first two authors in the relatively prime case. We also find a bijection between (dn, dm)–Dyck paths and d-tuples of (n, m)-Dyck paths endowed with certain gluing data. These are first steps towards understanding the relationship between the rational slope Catalan combinatorics in non relatively prime case and the geometry of affine Springer fibers and representation theory.

10.37236/6901 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Eugene Gorsky ◽  
Mikhail Mazin ◽  
Monica Vazirani

We study the relationship between rational slope Dyck paths and invariant subsets of $\mathbb{Z},$ extending the work of the first two authors in the relatively prime case. We also find a bijection between $(dn,dm)$–Dyck paths and $d$-tuples of $(n,m)$-Dyck paths endowed with certain gluing data. These are the first steps towards understanding the relationship between rational slope Catalan combinatorics and the geometry of affine Springer fibers and knot invariants in the non relatively prime case.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Thomas Bliem ◽  
Dido Salazar

International audience Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950) and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras. Stanley (1986) a montré que chaque ensemble fini partiellement ordonné permet de définir deux polyèdres, le polyèdre de l'ordre et le polyèdre des cha\^ınes. Ces polyèdres ont le même polynôme de Ehrhart, bien qu'ils soient tout à fait distincts du point de vue combinatoire. On généralise ce résultat à une famille plus générale de polyèdres, construits à partir d'un ensemble partiellement ordonné ayant des entiers attachés à certains de ses éléments. Par cette construction, on explique en termes combinatoires la relation entre les polyèdres de Gelfand-Tsetlin (1950) et ceux de Feigin-Fourier-Littelmann-Vinberg (2010, 2005), qui apparaissent dans la théorie des représentations des algèbres de Lie linéaires spéciales. On utilise les polyèdres de Gelfand-Tsetlin généralisés par Berenstein et Zelevinsky (1989) afin d'obtenir des analogues (conjecturés) des polytopes de Feigin-Fourier-Littelmann-Vinberg pour les algèbres de Lie symplectiques et orthogonales impaires.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Andrew Berget ◽  
Brendon Rhoades

International audience The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$. We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees. We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this bivariate generalization. L’action du groupe symétrique $S_n$ sur l’ensemble $\mathrm{Park}_n$ des fonctions de stationnement de longueur $n$ a reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de $S_n$ sur $\mathrm{Park}_n$ s’étend à une action de $S_{n+1}$. Plus précisément, nous construisons un gradué $S_{n+1}$-module $V_n$ telles que la restriction de $S_n$ est isomorphe à $\mathrm{Park}_n$. Nous décrivons la $S_n$-Frobenius caractères des modules $V_n$ à tous les degrés et décrivent le $S_{n+1}$-Frobenius caractères de $V_n$ en degrés extrêmes. Nous donnons une généralisation bivariée $V_n^{(\ell, m)}$ de notre module $V_n$ dont la représentation théorie est régie par une généralisation bivariée des chemins de Dyck. Une généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.


Author(s):  
Kazuhiro Ando

Although Japan is the second largest music market in the world, the structure and practices of the music industry are little understood internationally. People overseas need to know how the music business works in Japan so that they can conduct business comfortably. The Japanese music industry has unique features in some respects. First, Japanese record labels remain heavily dependent on traditional physically packaged music although its profitability is much lower than that of digital distribution. Second, full-scale competition in the music copyright management business has just begun. While JASRAC monopolized this market for more than sixty years, the new entrant, NexTone has gradually increased the market share thanks to the frustration experienced by many music publishers and songwriters in their dealings with JASRAC. Third, the relationship between artists and artist management companies is more like an employer-employee relationship than a client-agent relationship. Artist management companies are fully invested in discovering, nurturing, and marketing young artists just the way big businesses handle their recruits. This chapter illuminates practices of the Japanese music industry for an international audience.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rachel Karpman

International audience A <i>parametrization</i> of a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov’s <i>boundary measurement map</i>, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called <i>bridge graphs</i>, which have applications to particle physics. Our second family arises from Marsh and Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization. Soit $\Pi$ une variété positroïde. Nous appellerons <i>paramétrisation</i> toute application régulière $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ qui est un isomorphisme birégulier sur un sous-ensemble dense de $\Pi$. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu’elles coïncident. La première famille trouve son origine dans la <i>fonction de mesure des bords</i> de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les <i>graphes de ponts</i>, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar correspond à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde avec quelque paramétrisation de Deodhar.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Ben Salisbury ◽  
Adam Schultze ◽  
Peter Tingley

International audience Lusztig's theory of PBW bases gives a way to realize the crystal B(∞) for any simple complex Lie algebra where the underlying set consists of Kostant partitions. In fact, there are many different such realizations, one for each reduced expression for the longest element of the Weyl group. There is an algorithm to calculate the actions of the crystal operators, but it can be quite complicated. For ADE types, we give conditions on the reduced expression which ensure that the corresponding crystal operators are given by simple combinatorial bracketing rules. We then give at least one reduced expression satisfying our conditions in every type except E8, and discuss the resulting combinatorics. Finally, we describe the relationship with more standard tableaux combinatorics in types A and D.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar rooted trees, generalized Dyck paths, Schröder trees, Motzkin paths, integer compositions, directed animals, etc. We also retrieve some known operads: the magmatic operad, the commutative associative operad, and the diassociative operad.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.


Sign in / Sign up

Export Citation Format

Share Document