scholarly journals From resolvents to generalized equations and quasi-variational inequalities: existence and differentiability

2022 ◽  
Vol Volume 3 (Original research articles) ◽  
Author(s):  
Gerd Wachsmuth

We consider a generalized equation governed by a strongly monotone and Lipschitz single-valued mapping and a maximally monotone set-valued mapping in a Hilbert space. We are interested in the sensitivity of solutions w.r.t. perturbations of both mappings. We demonstrate that the directional differentiability of the solution map can be verified by using the directional differentiability of the single-valued operator and of the resolvent of the set-valued mapping. The result is applied to quasi-generalized equations in which we have an additional dependence of the solution within the set-valued part of the equation.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qiyuan Wei ◽  
Liwei Zhang

<p style='text-indent:20px;'>An accelerated differential equation system with Yosida regularization and its numerical discretized scheme, for solving solutions to a generalized equation, are investigated. Given a maximal monotone operator <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> on a Hilbert space, this paper will study the asymptotic behavior of the solution trajectories of the differential equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \dot{x}(t)+T_{\lambda(t)}(x(t)-\alpha(t)T_{\lambda(t)}(x(t))) = 0,\quad t\geq t_0\geq 0, \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>to the solution set <inline-formula><tex-math id="M2">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> of a generalized equation <inline-formula><tex-math id="M3">\begin{document}$ 0 \in T(x) $\end{document}</tex-math></inline-formula>. With smart choices of parameters <inline-formula><tex-math id="M4">\begin{document}$ \lambda(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \alpha(t) $\end{document}</tex-math></inline-formula>, we prove the weak convergence of the trajectory to some point of <inline-formula><tex-math id="M6">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ \|\dot{x}(t)\|\leq {\rm O}(1/t) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M8">\begin{document}$ t\rightarrow +\infty $\end{document}</tex-math></inline-formula>. Interestingly, under the upper Lipshitzian condition, strong convergence and faster convergence can be obtained. For numerical discretization of the system, the uniform convergence of the Euler approximate trajectory <inline-formula><tex-math id="M9">\begin{document}$ x^{h}(t) \rightarrow x(t) $\end{document}</tex-math></inline-formula> on interval <inline-formula><tex-math id="M10">\begin{document}$ [0,+\infty) $\end{document}</tex-math></inline-formula> is demonstrated when the step size <inline-formula><tex-math id="M11">\begin{document}$ h \rightarrow 0 $\end{document}</tex-math></inline-formula>.</p>


2018 ◽  
Vol 10 (4) ◽  
pp. 1
Author(s):  
M. Khaton ◽  
M. Rashid ◽  
M. Hossain

In this paper, we introduce and study the extended Newton-type method for solving generalized equation $0\in f(x)+g(x)+\mathcal F(x)$, where $f:\Omega\subseteq\mathcal X\to \mathcal Y$ is Fr\'{e}chet differentiable in a neighborhood $\Omega$ of a point $\bar{x}$ in $\mathcal X$, $g:\Omega\subseteq \mathcal X\to \mathcal Y$ is linear and differentiable at a point $\bar{x}$, and $\mathcal F$ is a set-valued mapping with closed graph acting in Banach spaces $\mathcal X$ and $\mathcal Y$. Semilocal and local convergence of the extended Newton-type method are analyzed.


2016 ◽  
Vol 35 ◽  
pp. 27-40 ◽  
Author(s):  
MH Rashid ◽  
A Sarder

Let X and Y be real or complex Banach spaces. Suppose that f: X->Y is a Frechet differentiable function and F: X => 2Yis a set-valued mapping with closed graph. In the present paper, we study the Newton-type method for solving generalized equation 0 ? f(x) + F(x). We prove the existence of the sequence generated by the Newton-type method and establish local convergence of the sequence generated by this method for generalized equation.GANIT J. Bangladesh Math. Soc.Vol. 35 (2015) 27-40


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Bin-Chao Deng ◽  
Tong Chen

LetHbe a real Hilbert space. LetT1,T2:H→Hbek1-,k2-strictly pseudononspreading mappings; letαnandβnbe two real sequences in (0,1). For givenx0∈H, the sequencexnis generated iteratively byxn+1=βnxn+1-βnTw1αnγfxn+I-μαnBTw2xn,∀n∈N, whereTwi=1−wiI+wiTiwithi=1,2andB:H→His strongly monotone and Lipschitzian. Under some mild conditions on parametersαnandβn, we prove that the sequencexnconverges strongly to the setFixT1∩FixT2of fixed points of a pair of strictly pseudononspreading mappingsT1andT2.


2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
S. Imnang

A new general system of variational inequalities in a real Hilbert space is introduced and studied. The solution of this system is shown to be a fixed point of a nonexpansive mapping. We also introduce a hybrid projection algorithm for finding a common element of the set of solutions of a new general system of variational inequalities, the set of solutions of a mixed equilibrium problem, and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Several strong convergence theorems of the proposed hybrid projection algorithm are established by using the demiclosedness principle. Our results extend and improve recent results announced by many others.


Sign in / Sign up

Export Citation Format

Share Document