scholarly journals Cooperative Multi-Agent Vehicle-to-Vehicle Wireless Network in a Noisy Environment

Author(s):  
Ayman M. Mansour

With the rapid development of vehicle communication and the goal of self-driving vehicle, research in this area is still ongoing, as car companies aspire for more studies and effective communication methods between vehicles. In this research, we have developed an intelligent, innovative and fully integrated multi agent model, which is used for vehicle-to-vehicle communications. The developed model is supported by an intelligent system based on a Nonlinear External Neural Network (NARX) and signal estimation theory. The system is built using real vehicles sensors, Arduino, GSM and RF technologies. The system is tested by applying different scenarios and observing vehicle behaviors. The results show that the smart system is able to make the appropriate decision based on both the vehicle's current condition and sensor readings. The developed system is able to operate effectively in a noisy environment in an excellent manner.

2021 ◽  
pp. 1-17
Author(s):  
Alaa Daoud ◽  
Flavien Balbo ◽  
Paolo Gianessi ◽  
Gauthier Picard

On-Demand Transport (ODT) systems have attracted increasing attention in recent years. Traditional centralized dispatching can achieve optimal solutions, but NP-Hard complexity makes it unsuitable for online and dynamic problems. Centralized and decentralized heuristics can achieve fast, feasible solution at run-time with no guarantee on the quality. Starting from a feasible not optimal solution, we present in this paper a new solution model (ORNInA) consisting of two parallel coordination processes. The first one is a decentralized insertion-heuristic based algorithm to build vehicle schedules in order to solve a particular case of the dynamic Dial-A-Ride-Problem (DARP) as an ODT system, in which vehicles communicate via Vehicle-to-vehicle communication (V2V) and make decentralized decisions. The second coordination scheme is a continuous optimization process namely Pull-demand protocol, based on combinatorial auctions, in order to improve the quality of the global solution achieved by decentralized decision at run-time by exchanging resources between vehicles (k-opt). In its simplest implementation, k is set to 1 so that vehicles can exchange only one resource at a time. We evaluate and analyze the promising results of our contributed techniques on synthetic data for taxis operating in Saint-Étienne city, against a classical decentralized greedy approach and a centralized one that uses a classical mixed-integer linear program (MILP) solver.


2020 ◽  
Vol 8 ◽  
pp. 14-21
Author(s):  
Surya Man Koju ◽  
Nikil Thapa

This paper presents economic and reconfigurable RF based wireless communication at 2.4 GHz between two vehicles. It implements digital VLSI using two Spartan 3E FPGAs, where one vehicle receives the information of another vehicle and shares its own information to another vehicle. The information includes vehicle’s speed, location, heading and its operation, such as braking status and turning status. It implements autonomous vehicle technology. In this work, FPGA is used as central signal processing unit which is interfaced with two microcontrollers (ATmega328P). Microcontroller-1 is interfaced with compass module, GPS module, DF Player mini and nRF24L01 module. This microcontroller determines the relative position and the relative heading as seen from one vehicle to another. Microcontroller-2 is used to measure the speed of vehicle digitally. The resulting data from these microcontrollers are transmitted separately and serially through UART interface to FPGA. At FPGA, different signal processing such as speed comparison, turn comparison, distance range measurement and vehicle operation processing, are carried out to generate the voice announcement command, warning signals, event signals, and such outputs are utilized to warn drivers about potential accidents and prevent crashes before event happens.


2009 ◽  
Vol 29 (2) ◽  
pp. 412-415
Author(s):  
Qiang LU ◽  
Ming CHEN ◽  
Zhi-guang WANG

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 651
Author(s):  
Wouter Schinkel ◽  
Tom van der Sande ◽  
Henk Nijmeijer

A cooperative state estimation framework for automated vehicle applications is presented and demonstrated via simulations, the estimation framework is used to estimate the state of a lead and following vehicle simultaneously. Recent developments in the field of cooperative driving require novel techniques to ensure accurate and stable vehicle following behavior. Control schemes for the cooperative control of longitudinal and lateral vehicle dynamics generally require vehicle state information about the lead vehicle, which in some cases cannot be accurately measured. Including vehicle-to-vehicle communication in the state estimation process can provide the required input signals for the practical implementation of cooperative control schemes. This study is focused on demonstrating the benefits of using vehicle-to-vehicle communication in the state estimation of a lead and following vehicle via simulations. The state estimator, which uses a cascaded Kalman filtering process, takes the operating frequencies of different sensors into account in the estimation process. Simulation results of three different driving scenarios demonstrate the benefits of using vehicle-to-vehicle communication as well as the attenuation of measurement noise. Furthermore, in contrast to relying on low frequency measurement data for the input signals of cooperative control schemes, the state estimator provides a state estimate at every sample.


Author(s):  
Jesy Pachat ◽  
Nujoom Sageer Karat ◽  
Anjana Ambika Mahesh ◽  
Deepthi P P ◽  
Sundar Rajan

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4873
Author(s):  
Biao Xu ◽  
Minyan Lu ◽  
Hong Zhang ◽  
Cong Pan

A wireless sensor network (WSN) is a group of sensors connected with a wireless communications infrastructure designed to monitor and send collected data to the primary server. The WSN is the cornerstone of the Internet of Things (IoT) and Industry 4.0. Robustness is an essential characteristic of WSN that enables reliable functionalities to end customers. However, existing approaches primarily focus on component reliability and malware propagation, while the robustness and security of cascading failures between the physical domain and the information domain are usually ignored. This paper proposes a cross-domain agent-based model to analyze the connectivity robustness of a system in the malware propagation process. The agent characteristics and transition rules are also described in detail. To verify the practicality of the model, three scenarios based on different network topologies are proposed. Finally, the robustness of the scenarios and the topologies are discussed.


Sign in / Sign up

Export Citation Format

Share Document