scholarly journals Study of Energy States and U(5) – O(6) Transitional Symmetry of Even–Even104 – 108Cd Isotopes by Interacting Boson Model(IBM-1).

Author(s):  
Omar Ahmed Muaffaq

In this study we calculated the energy levels of low lying structure for 104 – 108 Cd isotopes and the reduced transition B(E2) of even – even Cd nuclei for A=104,106, 108 by using" the interaction boson model IBM-1" and compared with experimental values .The ratio R(4/2) for the energy levels for 41 + and 21 + states were also calculated for those isotopes .The 104 – 108 Cd nuclei in " U(5) – O(6) transitional symmetry" were studied .The contour plots of the potential energy surfaces (P E S) was calculate for the isotopes above .

2017 ◽  
Vol 26 (04) ◽  
pp. 1750019 ◽  
Author(s):  
Huda H. Kassim

Interacting Boson Model (IBM -1) has been used to study the energy levels and [Formula: see text] transition rates in Ba–Dy ([Formula: see text]) isotones. A simplified Hamiltonian is used which is written in the creation and annihilation form and for each nucleus, by fitting the selected experimental energy levels and [Formula: see text] transition rates with the calculated ones to get the best model parameters. Using the (IBM) Hamiltonian with an intrinsic state formalism, the potential energy surfaces (PES) for even–even Ba–Dy nuclei have been obtained and the contour plot of PES show that the shape phase transitions from spherical [Formula: see text] to deformed shape [Formula: see text] has been determined for the [Formula: see text], while [Formula: see text]Ce, [Formula: see text]Nd, [Formula: see text]Sm, [Formula: see text]Gd and [Formula: see text]Dy nuclei are deformed and have rotational-like characters. The behavior of energy and [Formula: see text] ratios in the ground state band are examined.


2020 ◽  
pp. 13-18
Author(s):  
I. Hossain ◽  
Huda H. Kassim ◽  
Fadhil I. Sharrad ◽  
Mushtaq A. Al-Jubbori ◽  
A. Salam ◽  
...  

In this paper, even-even 104−106Ru isotopes have been studied the ground state bands using Matlab computer code (IBM-1.Mat). We apply the interacting boson model-1 (IBM-1) formula for O(6) symmetry in Ru isotopes with neutron N = 60, 62. The theoretical energy levels up to spin-parity 12+ have been obtained for 104−106Ru isotopes. The yrast states, gamma band, beta band, and B(E2) values are calculated for these nuclei. The published experimental and calculated R4/2 values indicate that the even-even 104−106Ru isotopes have O(6) dynamic symmetry. The present results have been compared to the published experimental data and are found good harmony with each other. The outcome of our investigation of the potential energy surfaces (PES) of both isotopes belonging to O(6) character.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Faina Dubnikova ◽  
Assa Lifshitz

Potential energy surfaces for three unimolecular elimination reactions: , , and were calculated using a variety of quantum chemical methods. It was shown that, in all the three cases, the transition state in the first step of the reaction leads to the production of the complex intermediates based on van der Waals interactions. In addition to the fact that the three complexes appear as intermediates on the potential energy surfaces, which means that they are not free entities, the entropy values of the two elimination products are far above those of the complexes due to their additional Sackur-Tetrode entropy. Moreover, the three vibrational frequencies of the H2O group in the (CH3)3COH complex and the H–Cl and H–F stretch frequencies in CH3CF3 and CH3CH2CH2Cl are quite different (see the various tables). The energy levels of the complexes were found to be below those of the corresponding decomposition products. Rate constants for the elimination processes were calculated from the potential energy surfaces using transition-state theory and were compared to available experimental data.


1986 ◽  
Vol 51 (10) ◽  
pp. 2057-2062 ◽  
Author(s):  
Jan Vojtík ◽  
Vladimír Špirko ◽  
Per Jensen

The present publication reports variational calculations of the vibrational energy levels for H3+, D3+, 6Li3+, and 7Li3+, starting from potential energy surfaces generated by the DIM scheme. The vibrational energies obtained agree semiquantitatively with those based on the best ab initio potentials available. The results seem to indicate that an analogous approach might be useful in describing the vibrational motion of heavier alkali cluster cations A3+.


2012 ◽  
Vol 11 (06) ◽  
pp. 1175-1182 ◽  
Author(s):  
RONG CHEN ◽  
HUA ZHU

We report averaged potential energy surfaces for isotopic Ne–CO2 complexes (20 Ne –13 C 16 O 2, 22 Ne –12 C 16 O 2 and 22 Ne –13 C 16 O 2). According to the latest ab initio potential of 20 Ne –12 C 16 O 2 (Chen R, Jiao EQ, Zhu H, Xie DQ, J Chem Phys133:104302, 2010) including the Q3 normal mode for the υ3 antisymmetric stretching vibration of the CO2 molecule. We obtain the averaged potentials for 20 Ne –13 C 16 O 2, 22 Ne –12 C 16 O 2 and 22 Ne –13 C 16 O 2 by the integration of the three-dimensional potential over the Q3 coordinate. The averaged potential surfaces are found to have a T-shaped global minimum and two equivalent linear local minima. The radial DVR/angular FBR method and the Lanczos algorithm are applied to calculate the rovibrational energy levels. Comparison with the available observed values showed an overall excellent agreement for all spectroscopic parameters and the microwave spectra.


2014 ◽  
Vol 670-671 ◽  
pp. 235-239
Author(s):  
Rong Chen ◽  
Xiao Ling Luo

Averaged potential energy surfaces for isotopic Ne–CO2complexes (20Ne–18O13C16O,20Ne–17O12C16O and22Ne–17O12C16O) are presented. According to the latestab initiopotential of20Ne–12C16O2(R. Chen, H. Zhu, D. Q. Xie, J. Chem. Phys, 133, 2010, 104302,) which incorporates its dependence on theQ3normal mode for the antisymmetric stretching vibration of the CO2molecule, we obtain the averaged potentials for20Ne–18O13C16O,20Ne–17O12C16O and22Ne–17O12C16O complexes by integrating the potential energy surface overQ3normal mode. Each averaged potential surfaces are found to have a T-shaped global minimum and two equivalent linear local minima. The radial DVR/angular FBR method and the Lanczos algorithm are applied to calculate the rovibrational energy levels. Comparison with the available experimental values showed an overall excellent agreement for all spectroscopic parameters and the microwave spectra.


Author(s):  
Zachary Morrow ◽  
Hyuk-Yong Kwon ◽  
Carl Tim Kelley ◽  
Elena Jakubikova

Molecular dynamics simulations often classically evolve the nuclear geometry on adiabatic potential energy surfaces (PESs), punctuated by random hops between energy levels in regions of strong coupling, in an algorithm...


Sign in / Sign up

Export Citation Format

Share Document