MATHEMATICAL MODELING AND COMPUTER PREDICTION OF ELASTIC, VISCOELASTIC AND PLASTIC DEFORMATION OF POLYMER TEXTILE MATERIALS

Author(s):  
A. A. Kozlov ◽  
A. M. Litvinov ◽  
S. V. Kiselev ◽  
M. A. Egorova
Author(s):  
Мария Игоревна Быкова ◽  
Николай Дмитриевич Вервейко ◽  
Светлана Евгеньевна Крупенко ◽  
Александр Иванович Шашкин ◽  
Софья Александровна Шашкина

В ближайшей окрестности вершины плоской трещины, а в общем случае, вблизи передней кромки пространственной трещины, деформирование материала носит неупругий характер. В работе предложено лучевое моделирование высокоскоростного деформирования материала в δ-окрестности подвижной передней кромки трещины, используя динамическую упруговязкопластическую модель тела Бингама с условием пластичности Мизеса. Показано, что распространяющаяся передняя кромка трещины продольного сдвига лежит на поверхности сильного разрыва продольной скорости, бегущей со скоростью упругих продольных волн, а передняя кромка трещины отрыва и трещины поперечного сдвига лежит на поверхности сдвиговой волны, бегущей со скоростью волн сдвига. Введены интенсивности передних кромок трещин: скачок скорости сдвига поперек передней кромки трещины продольного сдвига, скачок поперечной скорости на передней кромке трещины отрыва, скачок касательной скорости к передней кромке трещины поперечного сдвига. Построены обыкновенные дифференциальные уравнения переноса интенсивностей передних кромок трещин вдоль лучей как ортогональных траекторий точек переднего фронта. Получены приближенные решения уравнений переноса интенсивностей передних кромок пространственных трещин в напряженный материал и приведены выражения для глубины проникания пространственных трещин. Показано изменение направления сдвига и отрыва в передних кромках соответствующих трещин в зависимости от напряженного состояния перед трещинами. Приведены графики численных расчетов переноса интенсивностей передних кромок трещин и глубины их проникания. In the near neighborhood of the top of the plane crack, and in General, in the space case, near the edge of the spatial crack, the deformations of the material have the inelastic character. In this article proposes the elasticviscoplastic model of the Bingham body with the condition of plasticity of Mises for modeling high velocity deformation material near of the top of crack. Shown that an edge of crack belong a surface of elastic wave: cracks of longitudinal shear belong of longitudinal wave and a crack of untiplane shear and avulsion belong a surface of shear wave. For intensity of the crack suggest a shock velocity on the curve of the edge of crack and made ordinary differential equation for transfer intensity of crack on the front of the wave. Shown that a distant of propagation edge of the crack depend from plastic deformation material on the front of the wave. In the process of propagation crack this direction of shear can change from a stresses in front of the wave. Three-D graphics show change intensity of the crack in a process of propagation from parameters.


2018 ◽  
Vol 243 ◽  
pp. 00008 ◽  
Author(s):  
Oleg Matvienko ◽  
Olga Daneyko ◽  
Tatyana Kovalevskaya

The influence of the internal and external pressure subjected to the tube from dispersion-hardened aluminium alloy was investigated. The approach which combines methods of crystal plasticity and mechanics of deformable solid was used to explore the limits of elastic and plastic resistance. The mathematical model of plastic deformation includes balance equations for deformation defects with regard to the generation and annihilation of shear dislocations, vacancy and interstitial prismatic dislocation loops, and dislocations in dipole configurations of vacancy and interstitial types and also equilibrium equation, geometrical and physical relations between the deformations, displacements and stresses. It has been established that as the temperature increases, the limits of the elastic and plastic resistance decrease. Results of investigation demonstrate that the hardening the alloy by nanoparticles significantly improves the strength characteristics of the material.


Author(s):  
A.G. Makarov ◽  
N.V. Pereborova ◽  
E.A. Buryak ◽  
I.M. Egorov ◽  
O.E. Kalanchuk

Author(s):  
N. S. Klimova ◽  
N. V. Pereborova ◽  
A. M. Litvinov ◽  
A. A. Kozlov

Sign in / Sign up

Export Citation Format

Share Document