scholarly journals Active Power Control of Grid tied PV system using Fuzzy Controller

Author(s):  
P Ankineedu Prasad and Y Lakshmi

Historically, electric power system operators have seen photovoltaic (PV) power systems as potential sources of problems due to intermittency and lack of controllability. However, the flexibility of power electronic inverters allows PV to provide grid-friendly features including volt-VAR control, ramp-rate control, high-frequency power curtailment, and event ride-through. Commercially available smart PV inverters can further provide frequency down-regulation by curtailing power, but they are unable to provide true frequency regulation through active power control (APC) because they are unable to increase power on command. This paper proposes a coordinated DC-link voltage control and deloading control for two-stage PV system to offer frequency support in an islanded microgrid without energy storage system (ESS). This paper proposes a predictive fuzzy logic based PV inverter control method for very fast and accurate control of active power

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 129 ◽  
Author(s):  
Mustafa Ergin Şahin ◽  
Frede Blaabjerg

An increase in the integration of renewable energy generation worldwide brings along some challenges to energy systems. Energy systems need to be regulated following grid codes for the grid stability and efficiency of renewable energy utilization. The main problems that are on the active side can be caused by excessive power generation or unregulated energy generation, such as a partially cloudy day. The main problems on the load side can be caused by excessive or unregulated energy demand or nonlinear loads which deteriorate the power quality of the energy networks. This study focuses on the energy generation side as active power control. In this study, the benefits of supercapacitor use in a hybrid storage system are investigated and analyzed. A hybrid system in which photovoltaic powered and stored the energy in battery and supercapacitor are proposed in this study to solving the main problems in two sides. The supercapacitor model, photovoltaic model, and the proposed hybrid system are designed in MATLAB/Simulink for 6 kW rated power. Also, a new topology is proposed to increase the energy storage with supercapacitors for a passive storage system. The instantaneous peak currents energy is aimed to store in supercapacitors temporarily with this topology. The main advantages of this topology are voltage stabilization in two sides by the supercapacitors and a limitation of the battery load, which directly results in longer battery life and decreases the system cost. The simulation results are investigated for this topology.


2015 ◽  
Vol 40 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Yong Liu ◽  
Lin Zhu ◽  
Lingwei Zhan ◽  
Jose R. Gracia ◽  
Thomas Jr. King ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1329 ◽  
Author(s):  
Hongwei Li ◽  
Kaide Ren ◽  
Shuaibing Li ◽  
Haiying Dong

To deal with the randomness and uncertainty of the wind power generation process, this paper proposes the use of the clustering method to complement the multi-model predictive control algorithm for active power control. Firstly, the fuzzy clustering algorithm is adopted to classify actual measured data; then, the forgetting factor recursive least square method is used to establish the multi-model of the system as the prediction model. Secondly, the model predictive controller is designed to use the measured wind speed as disturbance, the pitch angle as the control variable, and the active power as the output. Finally, the parameters and measured data of wind generators in operation in Western China are adopted for simulation and verification. Compared to the single model prediction control method, the adaptive multi-model predictive control method can yield a much higher prediction accuracy, which can significantly eliminate the instability in the process of wind power generation.


Sign in / Sign up

Export Citation Format

Share Document