scholarly journals Effects of Thermal Treatment Processes (TTP) on the Tensile Properties of 0.165% Carbon Steel

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Yusuf Shuaib-Babata ◽  
Reuben Adebare Adewuyi

In practice, welded low carbon steels do fail at the welded joints in use, thus leading to structural defects, material wastages, structural failure, and at times loss of lives, among others. This has been a great concern to practicing Engineers and Researchers. This study tends to proffer solution to this problem of concern through application of post welded thermal treatments. The welded samples were subjected to some post-weld thermal-treatment (TTP) operations such as normalizing, annealing and quench-hardening using different quenching media (Water, Palm oil, Quartz 5000 Total Engine oil, and Ground nut oil). The Tensile properties of the steel (such as tensile stress, tensile strain, and toughness) were determined before and after welding operations. At yield points, the thermal treatment processes adversely affected the strength of the welded steel. Meanwhile, normalizing and annealing processes enhanced the steel’s ductility and toughness, while quench-hardening process, irrespective of medium of quenching used reduced the steel toughness value. The toughness of the welded steel at the fracture point was also reduced through all the adopted thermal processes, except for normalizing process. The steel ultimate tensile stress and strain and its toughness values were equally reduced after TTP. Improvement of the properties of welded low carbon steel and the reduction of mechanical hazard were achieved through effective TTP. Thus, a better tensile property of welded low carbon steel was elicited by post-weld normalizing and annealing operations. Hence, butt-welded annealed and normalized low carbon steel specimens tend to be more resilient to failures at welded joints.

2022 ◽  
Vol 26 (1) ◽  
pp. 79-86
Author(s):  
Hussain Hayyal ◽  
◽  
Nadhim M. Faleh ◽  

In this study, three welding methods are used. The purpose to investigation the effects of SMAW, SAW, and gas tungsten arc welding (GTAW) on the tensile stress of low carbon steel conforming to ASTM 283 c. 8mm thick plates are used as base material for butt welded joints. The tensile properties of the welded joints were evaluated and the results were compared by experts using the Taguchi method to design three levels of each parameter (current, voltage and displacement speed). From this research, it is found that compared to metal shielded arc welding and submerged arc welding, the pulling effect of the gas shielded welding joint of the tungsten electrode is the best. This is mainly due to the presence of The results of using analysis of variance (ANOVA) to estimate important parameters show that welding current and speed of the weld have a significant effect on tensile stress .the experimental results are in agreement with predicted results, and the maximum error is 3%..


2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5059
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Miroslav Džupon ◽  
Yuriy Anatolievich Kalinin ◽  
Vasily Georgievich Efremenko ◽  
...  

The purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding. The major conclusion is that the soft austenitic layer appears in the vicinity of the fusion line as a result of the fast cooling of the welding joint. The microstructure of the heat affected zone of quenched 120Mn3Si2 steel after welding with rapid cooling in water consists of several subzones. The first one is a purely austenitic subzone, followed by austenite + martensite microstructure, and finally, an almost fully martensitic subzone. The rest of the heat affected zone is tempered material that is heated during welding below A1 critical temperature. ISO 4136 tensile tests were carried out for the welded joints of 120Mn3Si2 steel and 09Mn2Si low carbon steel (ASTM A516, DIN13Mn6 equivalent) after welding with fast cooling in water. The tests showed that welded joints are stronger than the quenched 120Mn3Si2 steel itself. The results of work can be used in industries where the severe mechanical wear of machine parts is a challenge.


2014 ◽  
Vol 698 ◽  
pp. 378-381 ◽  
Author(s):  
Alexandra Chevakinskaya ◽  
Aelita Nikulina ◽  
Natalia Plotnikova

In this paper combined Hadfield steel - stainless steel - rail steel compounds are considered. Structural studies and estimation of mechanical properties showed that using an intermediate layer of low-carbon steel with 0.2 C wt. % and 5-20 mm thick between high-carbon steel and chromium-nickel steel in the formation of welded joints increases the reliability of connections by reducing the amount of high-strength zones as compared to compounds without a barrier layer.


2015 ◽  
Vol 788 ◽  
pp. 218-224
Author(s):  
Aelita Nikulina ◽  
Vadim Yu. Skeeba ◽  
Alexandra Chevakinskaya ◽  
Pavel Komarov

This paper shows the results of solving a 3D problem to define types of structures and tensions which can appear during the butt contact welding process of dissimilar steels through low carbon steel inserts. The finite element method to calculate welded structures was used. The thickness of inserts was the main variable parameter. According to the results of numerical simulation using inserts can increase the reliability of welded joints between pearlitic high-carbon steel and austenitic chromium-nickel steel. The best result was obtained by using an insert with a thickness less than 20 mm. Structural studies of the welded joints between high-carbon steel and chromium-nickel steel through low-carbon inserts confirm the results of mathematical modeling.


1991 ◽  
Vol 20-28 ◽  
pp. 2337-2345
Author(s):  
Jin Xue ◽  
Yu Wen Wang ◽  
Li Xia Zhou ◽  
Ji Gao Qi

Applied laser ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 196-202
Author(s):  
杨兆华 Yang Zhaohua ◽  
陈长军 Chen Changjun ◽  
王晓南 Wang Xiaonan ◽  
张敏 Zhang Min ◽  
朱广江 Zhu guangjiang

Sign in / Sign up

Export Citation Format

Share Document