scholarly journals Effects of Welding Power Input on the Microstructure and Impact Toughness of the Heat Affected Zone of 304L Austenitic Stainless Steel

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Akinlabi Oyetunji ◽  
Muideen A Bodude ◽  
Wasiu A Ayoola ◽  
Bolarinwa J Kutelu

The effects of welding power input on the microstructural characteristics and impact behaviour of the Heat Affected Zone (HAZ) of type 304L austenitic stainless steel were investigated. This is with a view to optimize the welding process and ensure high weldment integrity of the heat affected zone.  Chemical analysis of the as-received 304L austenitic stainless steel was determined using an Optical Emission Spectrometry AR 4 30 metal analyzer. Thereafter, 30 samples of the as-received 304L austenitic stainless steel plate with dimensions  of 70 mm length, 45 mm breadth and 8 mm thickness  were cut and labeled into A, B and C each of 10 numbers. The grouped samples were further cut into two equal halves with hacksaw and welded using Gas Metal Arc Welding (GTAW) process and 304L electrode to produce butt joint HAZ square geometry samples. The obtained HAZ and as-received samples were machined to standard charpy impact test specimens.  Also, the HAZ and as-received specimens were prepared for microscopy studies using optical microscopy. Results obtained showed that the microstructures are composed majorly of mixture of austenite and ferrite phases, also variations in volume fraction and grain size of the phases were observed under varied range of power input. In addition, chromium carbide formation and precipitation due to sensitization was seen at the grain boundaries. Optimum impact toughness (IT) of 42 J was obtained for HAZ sample at power input of 12.0 KW while the least IT of 39 J was obtained from sample welded using power input of 4.6 KW as compared with the as-received with IT of 58 J.Keywords - 304L austenitic stainless steel; gas metal arc welding; impact toughness; microstructures;

2015 ◽  
Vol 787 ◽  
pp. 500-504
Author(s):  
P. Manavalan ◽  
S. Ravi ◽  
R. Kesavan

The present investigation is aimed to study the effect of pulsed current gas metal arc welding on the tensile strength of AISI 904L super austenitic stainless steel joint 1.2 mm diameter solid wire of same composition. The joints were fabricated using pulsed current gas metal arc welding and by varying five factors such as peak current, pulse on time, pulse on frequency, background current and welding speed at five different levels. Design matrix based on central composite rotatable design was selected to conduct the experiment and an attempt is made to maximize the tensile strength by optimizing the factors using graphical and numerical optimization techniques. Results were correlated with weld metal microstructures.


2018 ◽  
Vol 7 (2) ◽  
pp. 21-25
Author(s):  
Harsimranjit Singh Randhawa

In the present experimentation, a 10mm thick austenitic stainless steel plate type 304L is welded using single V-joint configuration and approaching the joint from one side. Back purging has been employed to protect the rear side of the root pass weld metal against oxidation. The root pass has been deposited by gas tungsten arc welding (GTAW) process. The filler passes are deposited by shielding metal arc welding (SMAW) process at 90A and 120A welding currents giving heat inputs of the order of 0.679 and 0.933 kJ/mm respectively while the speed of weld deposition was kept practically constant. The results of experimentation show that the micro-hardness of weld metal and heat affected zone (HAZ) of weldments produced at lower heat input is higher whereas impact toughness value of weld metal and HAZ is lower than that of joints produced at higher heat input. The microstructure of weld metal and heat affected zone developed at lower weld heat input has been observed finer in comparison to that resulted at higher heat input. This has primarily happened due to a higher rate of cooling at low heat input.


Sign in / Sign up

Export Citation Format

Share Document