scholarly journals Vzácný allanpringit - produkt alterace fluorwavellitu z lomu Milina u Zaječova (Česká republika)

2020 ◽  
Vol 28 (1) ◽  
pp. 126-131
Author(s):  
Luboš Vrtiška ◽  
Václav Zemek ◽  
Radana Malíková

A very rare phosphate allanpringite was found in the abandoned quarry Milina near Zaječov, Czech Republic in Ordovician sediments of the Barrandian area. Allanpringite forms yellow powder and earthy aggregates. In a more detailed study using SEM microscope, allanpringite forms rod-shaped and tabular crystals. Its origin is associated with alteration of fluorwavellite. Empirical formula of the allanprigite is (Fe2.70Al0.24)Σ2.94(PO4)2.00(OH)2.83·5H2O and refined unit-cell parameters are a 9.774(5), b 7.361(3), c 17.826(8) Å, β 92.2(6)° and V 1281.5(9) Å3. Allanpringite was found in association with jarosite, variscite and partly altered fluorwavellite.

2021 ◽  
Vol 29 (2) ◽  
pp. 275-280
Author(s):  
Pavel Škácha ◽  
Jiří Sejkora

The Pb-Sb mineralization with dominant stibnite and plagionite and associated semseyite and zinkenite was found in an archive material collected at the Antimonitová vein, Bohutín, Březové Hory ore district (Czech Republic). Plagionite forms subhedral aggregates up to 1 mm in size. The unit-cell parameters of plagionite for monoclinic space group C2/c refined from the X-ray powder data are: a 13.4890(17), b 11.8670(14), c 19.997(2) Å, β 107.199(8)° and V 3057.9(6) Å3. Its chemical composition (average of 26 analyses, based on 30 apfu) corresponds to the empirical formula Pb5.02Sb8.15S16.82. Associated zinkenite is forming subhedral crystals up to 1 mm in size. Its empirical formula can be expressed as (Cu0.25Ag0.02Fe0.01)Σ0.28Pb9.22Sb22.19S41.31 (average of 26 analyses, based on 73 apfu). Semseyite aggregates have the empirical formula (Pb8.72Fe0.14)8.86Sb8.42S20.73 (average of 11 analyses, based on 38 apfu).


2021 ◽  
Vol 29 (2) ◽  
pp. 213-229
Author(s):  
Petr Pauliš ◽  
Libor Hrůzek ◽  
Oldřich Janeček ◽  
Zdeněk Dolníček ◽  
Volker Betz ◽  
...  

A new locality of zeolite minerals occurs on the NE edge of the Jedlka village, at the SE slope of the Hlídka hill, 2 km to W of Benešov nad Ploučnicí (northern Bohemia, Czech Republic). The mineralization is developed in Cenozoic analcime-nepheline tephrite. Ten zeolite mineral species (gmelinite-K, analcime, harmotome, chabazite-Ca, lévyne-Ca, mezolite, natrolite, offretite, phillipsite-K, thomsonite-Ca) were found in small amygdule cavities of tephrite. The most interesting is gmelinite-K, a rare zeolite worldwide, which forms clear, white or slightly yellowish, hexagonal lenticular crystals up to 7 mm, always intergrown with the chabazite-Ca. The unit-cell parameters of gmelinite-K, refined from the powder X-ray data, are a = 13.795 (19), c = 9.811(6) Å and V = 1616.8(3) Å3; its quantitative chemical analyses correspond to the empirical formula (K2.32Ca1.86Sr0.53Na0.20Ba0.19)Σ5.10(Al8.14Si16.01O48)·22H2O.


2020 ◽  
Vol 28 (1) ◽  
pp. 152-160
Author(s):  
Petr Pauliš ◽  
Jiří Svejkovský ◽  
Zdeněk Dolníček ◽  
Petr Matys ◽  
Luboš Vrtiška ◽  
...  

A new occurrence of zeolite mineralization with phillipsite-K, phillipsite-Ca, thomsonite-Ca, natrolite and gonnardite has been discovered in an active basalt quarry in the Libá village near Cheb (Czech Republic). Phillipsites in small cavities form druses of white or colourless crystals up to 1 mm in size. Chemical analyses of phillipsite-K correspond to the empirical formula (K1.85Na1.24Ca0.83Ba0.27Sr0.01)Σ4.20(Al6.28Si10.33O32)·12H2O and phillipsite-Ca to (Ca1.84K1.33Na0.14Ba0.06)Σ3.37(Al5.97Si10.20O32)·12H2O. The unit-cell parameters were refined from the powder X-ray data for phillipsite-Ca as: a 9.924(2), b 14.309(3), c 8.7414(14) Å, β 124.92(2)° and V 1017.8(5) Å3. Thomsonite-Ca forms transparent hemispheric radial aggregates up to 1 cm in size. Its unit-cell parameters refined from the powder X-ray data are a 13.105(5), b 13.857(5), c 13.247(6) Å and V 2266.7(6) Å3 and its chemical analyses correspond to the empirical formula Ca1.79Sr0.18Na1.05(Al4.81 Si5.15)O20·6H2O. Natrolite occurs as snow white hemispheric radial clusters. Its unit-cell parameters refined from the powder X-ray data are a 18.326(7), b 18.569(7), c 6.594(3) Å and V 2243.8(9) Å3 and empirical formula is Na1.60Ca0.05(Al2.08 Si3.02)O10·2H2O. Gonnardite forms colourless or white aggregates of flat acicular crystals up to 2 mm in size. Its unit-cell parameters refined from the powder X-ray data are a 13.221(8), c 6.6233(4) Å and V 1156.9 Å3 and empirical formula is (Na3.14Ca2.21Sr0.02)Σ5.37(Al8.92Si11.41)Σ20.33O40·12H2O.


2021 ◽  
Vol 29 (1) ◽  
pp. 164-177
Author(s):  
Petr Pauliš ◽  
Libor Hrůzek ◽  
Oldřich Janeček ◽  
Zdeněk Dolníček ◽  
Luboš Vrtiška ◽  
...  

A new locality of böhmite and zeolite minerals, called „Soutěsky above the quarry“, occurs near the quarry „Soutěsky“ on the SW slope of the Hlídka hill, eastward of the Soutěsky village, about 5 km SW od the town of Děčín (Czech Republic). The mineralization is bound to vugs of Cenozoic volcanics. Böhmite forms mostly whitish to brownish hemispherical to spherical clusters up to 5 mm in size. The unit-cell parameters of böhmite, refined from the X-ray powder data, are a 2.871 (3), b 12.216(9), c 3.699(4) Å and V 129.7(2) Å3. Chemical analyses correspond to the empirical formula (Al0.92 Si0.06)Σ0.98O(OH). The following zeolites have been found in association with böhmite: thomsonite-Ca, phillipsite-K, gismondine, chabazite-Ca and analcime, as well as calcite. Minerals crystallized in following succession: calcite I → phillipsite-K → böhmite → calcite II → thomsonite-Ca → gismondine → calcite III. Independently, (older) analcime and (younger) chabazite-Ca occur. These minerals probably crystallized from low tempered solutions, enriched in Al ions and alkalies, the source of which can be found in altered rock-forming alumosilicates (analcime, nepheline).


2021 ◽  
Vol 29 (2) ◽  
pp. 281-284
Author(s):  
Petr Pauliš ◽  
Luboš Vrtiška ◽  
Zdeněk Dolníček ◽  
Radana Malíková ◽  
Ondřej Pour

Along with the abundant pyromorphite, relatively frequent coronadite was found in the Řimbaba mine in Bohutín near Příbram (Czech Republic). Coronadite forms up to 5 mm thick black matt and greasy coatings and cavity fillings. The unit cell parameters of coronadite, refined from the powder X-ray diffraction data, are a 9.943(17), b 2.876(8), c 9.820(11) Å, β 90.4(5)° and V 280.8(9) Å3 (space group I2/m). Chemical analyses correspond to the empirical formula Pb1.53Sb0.07Zn0.02(Mn4+5.62Mn3+2.06)O16.


2020 ◽  
Vol 28 (1) ◽  
pp. 170-178
Author(s):  
Petr Pauliš ◽  
Roman Gramblička ◽  
Luboš Vrtiška ◽  
Zdeněk Dolníček ◽  
Ondřej Pour ◽  
...  

Supergene Bi mineralization with namibite, bismutoferrite and bismutite was found on a quartz-fluorite vein Nadějná near the Kotlina in the Krušné hory Mts. (Czech Republic). Namibite forms green coatings on the cracks of fluorite veins and more rarely dark green glassy lustrous, hedgehog-shaped aggregates up to 0.2 mm in size formed by flat needle-like crystals. The unit-cell parameters of namibite refined from the powder X-ray data are: a 6.2096(18), b 7.395(2), c 7.4708(18) Å, α 90.1(2)°, β 108.73(15)°, γ 107.45(19)° and V 308.09(15) Å3. Its chemical analyses correspond to the empirical formula (Cu0.93Fe0.03Ca0.01)Σ0.97(BiO)1.79(V0.97P0.02Cr0.01)Σ1.00O4(OH)0.75. Bismutoferrite forms yellow powdery aggregates in cracks and in small cavities of fluorite. Its chemical analyses correspond to the empirical formula (Fe1.91 Cu0.03Mg0.02Al0.02Ca0.01)Σ1.99Bi0.92(SiO4)2.00(OH)0.68. Bismutite in the fluorite vein forms yellow-white pseudomorphoses probably after the acicular crystals of primary Bi sulfide (emplectite or bismuthinite) up to 2 mm long. Study of Raman spectra was performed for all studied minerals.


2020 ◽  
Vol 28 (1) ◽  
pp. 48-57
Author(s):  
Jiří Sejkora ◽  
Petr Pauliš ◽  
Roman Gramblička ◽  
Ondřej Pour

Two rare sulfosalt minerals, fülöppite and plagionite, have been determined in samples from a small abandoned Sb occurrence Mikulovický vrch near Kadaň, northern Bohemia, Czech Republic. The more abundant fülöppite forms grey aggregates (up to 5 mm in size) with metallic lustre in quartz gangue and rare crystals up to 1.5 mm across in association with stibnite, plagionite, sphalerite, pyrite and arsenopyrite. Fülöppite is monoclinic, space group C2/c with refined unit-cell parameters: a 13.443(2), b 11.737(2), c 16.953(2) Å, β 94.69(1)° and V 2665.9(5) Å3. Its empirical formula (mean of 93 point analyses) is (Pb2.80Sn0.01Hg0.01)Σ2.82Sb8.18S14.99. Two types of plagionite were found as irregular aggregates up to 200 μm in size in quartz gangue, ussualy in association with fülöppite. The first rarer one is close to the ideal composition with empirical formula (mean of 10 point analyses) (Pb4.90Hg0.01)Σ4.91Sb8.07S17.02; the second is distinctly Pb-poor with the calculated N homologue number in the range of 1.37 - 1.74 and empirical formula (mean of 62 point analyses) (Pb4.31Sn0.02Hg0.01)Σ4.34Sb8.53S17.13. Determination of fülöppite and Pb-poor plagionite were also confirmed by Raman spectroscopy. Gypsum, valentinite, native sulphur and jarosite were detected as products of weathering of primary mineralization.


2015 ◽  
Vol 79 (3) ◽  
pp. 767-780 ◽  
Author(s):  
Daniel Atencio ◽  
Artur C. Bastos Neto ◽  
Vitor P. Pereira ◽  
José T. M. M. Ferron ◽  
M. Hoshino ◽  
...  

AbstractWaimirite-(Y) (IMA 2013-108), orthorhombic YF3, occurs associated with halloysite, in hydrothermal veins (up to 30 mm thick) cross-cutting the albite-enriched facies of the A-type Madeira granite (∼1820 Ma), at the Pitinga mine, Presidente Figueiredo Co., Amazonas State, Brazil. Minerals in the granite are 'K-feldspar', albite, quartz, riebeckite, 'biotite', muscovite, cryolite, zircon, polylithionite, cassiterite, pyrochlore-group minerals, 'columbite', thorite, native lead, hematite, galena, fluorite, xenotime-(Y), gagarinite-(Y), fluocerite-(Ce), genthelvite–helvite, topaz, 'illite', kaolinite and 'chlorite'. The mineral occurs as massive aggregates of platy crystals up to ∼1 μm in size. Forms are not determined, but synthetic YF3 displays pinacoids, prisms and bipyramids. Colour: pale pink. Streak: white. Lustre: non-metallic. Transparent to translucent. Density (calc.) = 5.586 g/cm3 using the empirical formula. Waimirite-(Y) is biaxial, mean n = 1.54–1.56. The chemical composition is (average of 24 wavelength dispersive spectroscopy mode electron microprobe analyses, O calculated for charge balance): F 29.27, Ca 0.83, Y 37.25, La 0.19, Ce 0.30, Pr 0.15, Nd 0.65, Sm 0.74, Gd 1.86, Tb 0.78, Dy 8.06, Ho 1.85, Er 6.38, Tm 1.00, Yb 5.52, Lu 0.65, O (2.05), total (97.53) wt.%. The empirical formula (based on 1 cation) is (Y0.69Dy0.08Er0.06Yb0.05Ca0.03Gd0.02Ho0.02Nd0.01Sm0.01Tb0.01Tm0.01Lu0.01)Σ1.00[F2.54〈0.25O0.21]Σ3.00. Orthorhombic, Pnma, a = 6.386(1), b = 6.877(1), c = 4.401(1) Å, V = 193.28(7) Å3, Z = 4 (powder data). Powder X-ray diffraction (XRD) data [d in Å (I) (hkl)]: 3.707 (26) (011), 3.623 (78) (101), 3.438 (99) (020), 3.205 (100) (111), 2.894 (59) (210), 1.937 (33) (131), 1.916 (24) (301), 1.862 (27) (230). The name is for the Waimiri-Atroari Indian people of Roraima and Amazonas. A second occurrence of waimirite-(Y) is described from the hydrothermally altered quartz-rich microgranite at Jabal Tawlah, Saudi Arabia. Electron microprobe analyses gave the empirical formula (Y0.79Dy0.08Er0.05Gd0.03Ho0.02Tb0.01Tm0.01Yb0.01)Σ1.00[F2.85O0.08〈0.07]Σ3.00. The crystal structure was determined with a single crystal from Saudi Arabia. Unit-cell parameters refined from single-crystal XRD data are a = 6.38270(12), b = 6.86727(12), c = 4.39168(8) Å, V = 192.495(6) Å3, Z = 4. The refinement converged to R1 = 0.0173 and wR2 = 0.0388 for 193 independent reflections. Waimirite-(Y) is isomorphous with synthetic SmF3, HoF3 and YbF3. The Y atom forms a 9-coordinated YF9 tricapped trigonal prism in the crystal structure. The substitution of Y for Dy, as well as for other lanthanoids, causes no notable deviations in the crystallographic values, such as unit-cell parameters and interatomic distances, from those of pure YF3.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 353
Author(s):  
Cristian Biagioni ◽  
Paola Bonazzi ◽  
Marco Pasero ◽  
Federica Zaccarini ◽  
Corrado Balestra ◽  
...  

Two new monoclinic (P21/m) epidote supergroup minerals manganiakasakaite-(La) and ferriakasakaite-(Ce) were found in the small Mn ore deposit of Monte Maniglia, Bellino, Varaita Valley, Cuneo Province, Piedmont, Italy. Manganiakasakaite-(La) occurs as subhedral grains embedded in pyroxmangite. Its empirical formula is A(1)(Ca0.62Mn2+0.38) A(2)(La0.52Nd0.08Pr0.07Ce0.07Y0.01Ca0.25) M(1)(Mn3+0.52Fe3+0.28Al0.18V3+0.01) M(2)Al1.00 M(3)(Mn2+0.60Mn3+0.27Mg0.13) T(1−3)(Si2.99Al0.01) O12 (OH), corresponding to the end-member formula CaLaMn3+AlMn2+(Si2O7)(SiO4)O(OH). Unit-cell parameters are a = 8.9057(10), b = 5.7294(6), c = 10.1134(11) Å, β = 113.713(5)°, V = 472.46(9) Å3, Z = 2. The crystal structure of manganiakasakaite-(La) was refined to a final R1 = 0.0262 for 2119 reflections with Fo > 4σ(Fo) and 125 refined parameters. Ferriakasakaite-(Ce) occurs as small homogeneous domains within strongly inhomogeneous prismatic crystals, where other epidote supergroup minerals coexist [manganiandrosite-(Ce), “androsite-(Ce)”, and epidote]. Associated minerals are calcite and hematite. Its empirical formula is A(1)(Ca0.64Mn2+0.36) A(2)(Ce0.37La0.17Nd0.06Pr0.03Ca0.35□0.02) M(1)(Fe3+0.61Al0.39) M(2)Al1.00 M(3)(Mn2+0.64Mn3+0.33Fe3+0.02Mg0.01) T(1−3)Si3.01 O12 (OH), the end-member formula being CaCeFe3+AlMn2+(Si2O7)(SiO4)O(OH). Unit-cell parameters are a = 8.9033(3), b = 5.7066(2), c = 10.1363(3) Å, β = 114.222(2)°, V = 469.66(3) Å3, Z = 2. The crystal structure of ferriakasakaite-(Ce) was refined to a final R1 = 0.0196 for 1960 unique reflections with Fo > 4σ(Fo) and 124 refined parameters.


Author(s):  
Henning Bohse ◽  
Ole V. Petersen ◽  
Gerhard Niedermayr

 NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bohse, H., Petersen, O. V., & Niedermayr, G. (2001). Notes on leucophanite from the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 119-121. https://doi.org/10.34194/ggub.v190.5180 _______________ Leucophanite from the Ilímaussaq alkaline complex was first described in 1905. For nearly 60 years it was believed to be rare and of very limited distribution in Ilímaussaq, but it has lately proved to be of relatively widespread occurrence. Detailed descriptions of the various occurrences are given. The crystals show the forms {001}, {110}, {101}, {102}, {111} and {113}; all the crystals are twinned either along (110) or (010). Optically the Ilímaussaq leucophanite is biaxial with 2Vα (measured) = 40°; α = 1.575, β = γ = 1.597. The empirical formula, calculated on the basis of Si + Al = 4, is: (Ca1.97Mg0.05REE0.06)Σ2.08(Na2.13K0.01)Σ2.14Be1.92(Si3.88Al0.12)Σ4.00O12.01(F1.87OH0.19)Σ2.06. Unit cell parameters determined on the newly found material are a = 7.38–7.40, b = 7.40–7.41, c = 9.96–9.95, all ± 0.01 Å (Kangerluarsuk) and a = 7.43, b = 7.43, c = 9.90, all ± 0.01 Å (Nakkaalaaq). Thus, a full set of data for the Ilímaussaq leucophanite is now available.


Sign in / Sign up

Export Citation Format

Share Document