Radiative Unsteady Rarefied Gaseous Flow Over a Stretching Sheet with Velocity Slip and Temperature Jump Effects

2020 ◽  
Vol 87 (3-4) ◽  
pp. 261
Author(s):  
Ram Prakash Sharma ◽  
N. Indumathi ◽  
S. Saranya ◽  
B. Ganga ◽  
A. K. Abdul Hakeem

In this study a mathematical analysis has been carried out to scrutinize the unsteady boundary layer flow of an incompressible, rarefied gaseous flow over a vertical stretching sheet with velocity slip and thermal jump boundary conditions in the presence of thermal radiation. Using boundary layer approach and suitable similarity transformations, the governing partial differential equations with the boundary conditions are reduced to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved with the help of fourth order Runge-Kutta method with shooting technique. The results obtained for the velocity profile, temperature profile, skin friction coefficient and the reduced Nusselt number are described through graphs. It is predicted that the velocity and temperature profiles are lower for unsteady flow and has an opposite effect for steady flow.

2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


2014 ◽  
Vol 41 (2) ◽  
pp. 93-117
Author(s):  
B.I. Olajuwon ◽  
J.I. Oahimire ◽  
M.A. Waheed

This study presents a mathematical analysis of a hydromagnetic boundary layer flow, heat and mass transfer characteristics on steady twodimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field in the presence of thermal radiation. The governing system of partial differential equations is first transformed into a system of non- linear ordinary differential equation using the usual similarity transformation. The resulting coupled non-linear ordinary differential equations are then solved using perturbation technique. With the help of graphs, the effects of the various important parameters entering into the problem on the velocity, temperature and concentration fields within the boundary layer are separately discussed. The effects of the pertinent parameters on the wall temperature, wall solutal concentration, skin friction coefficient and the rate of heat and mass transfer are presented numerically in tabular form. The results obtained showed that these parameters have significant influence on the flow.


2016 ◽  
Vol 13 (2) ◽  
pp. 165-177 ◽  
Author(s):  
P. Bala Anki Reddy

An analysis is carried out to investigate the steady two-dimensional magnetohydrodynamic boundary layer flow of a Casson fluid over an exponentially stretching surface in the presence of thermal radiation and chemical reaction. Velocity, thermal and solutal slips are considered instead of no-slip conditions at the boundary. Stretching velocity, wall temperature and wall concentration are considered in the exponential forms. The non-linear partial differential equations are converted into a system of non-linear ordinary differential equations by similarity transformations. The resultant non-linear ordinary differential equations are solved numerically by fourth order Runge-Kutta method along with shooting technique. The influence of various parameters on the fluid velocity, temperature, concentration, wall skin friction coefficient, the heat transfer coefficient and the Sherwood number have been computed and the results are presented graphically and discussed quantitatively. Comparisons with previously published works are performed on various special cases and are found to be in excellent agreement.  


2018 ◽  
Vol 7 (4.10) ◽  
pp. 637
Author(s):  
S. Eswaramoorthi ◽  
K. Loganathan ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
S. Rajan

This work deliberates the MHD flow of Carreau liquid past a stretching plate with thermal radiation, viscous dissipation and Joule heating. Additionally, partial velocity slip and Newtonian heating effects are included in our study. The similarity transformations are used to convert the governing dimensional partial differential equations into dimensionless ordinary differential equations. Homotopy analysis method (HAM) is employed to find the convergent series solutions of the governed non-linear ordinary differential equations. It is found that the magnetic field parameter slowdown the liquid motion and rises the liquid temperature. In addition, heat generation parameter enhances the thermal boundary layer thickness and chemical reaction parameter suppresses the solutal boundary layer thickness.  


2018 ◽  
Vol 23 (3) ◽  
pp. 689-705
Author(s):  
K. Saritha ◽  
M.N. Rajasekhar ◽  
B.S. Reddy

Abstract A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential equations by using similarity transformations. These non-linear ordinary differential equations are first linearized using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of various governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields.


2013 ◽  
Vol 10 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Rushi Kumar

The present paper is to investigate the effect of linear thermal stratification in stable stationary ambient fluid on steady MHD convective flow of a viscous incompressible electrically conducting fluid along a Stretching sheet in the presence of mass transfer and Magnetic effect. The governing equations of continuity, momentum, energy and species are transformed into ordinary differential equations using local similarity transformation. The resulting coupled non-linear ordinary differential equations are solved using Runge-Kutta fourth order method along with shooting technique. The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of skin-friction coefficient, Nusselt number and Sherwood Number at the plate are derived, discussed numerically for various values of physical parameters and presented through Tables.DOI: http://dx.doi.org/10.3329/jname.v10i2.16400


2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document