scholarly journals Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with ohmic effect and chemical reaction

2021 ◽  
Vol 10 (1) ◽  
pp. 255-271
Author(s):  
Bhupendra K. Sharma ◽  
Chandan Kumawat

Abstract A study has been carried for a viscous, incompressible electrically conducting MHD blood flow with temperature-dependent thermal conductivity and viscosity through a stretching surface in the presence of thermal radiation, viscous dissipation, and chemical reaction. The flow is subjected to a uniform transverse magnetic field normal to the flow. The governing coupled partial differential equations are converted into a set of non-linear ordinary differential equations (ODE) using similarity analysis. The resultant non-linear coupled ordinary differential equations are solved numerically using the boundary value problem solver (bvp4c) in MATLAB with a convincible accuracy. The effects of the physical parameters such as viscosity parameter ( μ ( T ˜ b ) ) \left({\mu ({{\tilde T}_b})} \right) , permeability parameter (β), magnetic field parameter (M), Local Grashof number (Gr) for thermal diffusion, Local modified Grashof number for mass diffusion (Gm), the Eckert number (Ec), the thermal conductivity parameter ( K ( T ˜ b ) ) \left({K({{\tilde T}_b})} \right) on the velocity, temperature, concentration profiles, skin-friction coefficient, Nusselt number, and Sherwood number are presented graphically. The physical visualization of flow parameters that appeared in the problem is discussed with the help of various graphs to convey the real life application in industrial and engineering processes. A comparison has been made with previously published work and present study revels the good agreement with the published work. This study will be helpful in the clinical healing of pathological situations accompanied by accelerated circulation.

2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


2014 ◽  
Vol 19 (2) ◽  
pp. 259-273 ◽  
Author(s):  
N. Kishan ◽  
P. Kavitha

Abstract A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Abderrahim Wakif

A novel mathematical computing analysis for steady magnetohydrodynamic convective flows of radiative Casson fluids moving over a nonlinearly elongating elastic sheet with a nonuniform thickness is established successfully in this numerical exploration. Also, the significance of an externally applied magnetic field with space-dependent strength on the development of MHD convective flows of Casson viscoplastic fluids is evaluated thoroughly by including the momentous influence of linear thermal radiation along with the temperature-dependent viscosity and thermal conductivity effects. By combining the assumption of the low-inducing magnetic field with the boundary layer approximations, the governing partial differential equations monitoring the current flow model are transmuted accordingly into a set of nonlinear coupled ordinary differential equations by invoking appropriate similarity transformations. Moreover, these derived differential equations are resolved numerically by utilizing a new innovative GDQLLM algorithm integrating the local linearization technique with the generalized differential quadrature method. On the other hand, the behaviours of velocity and temperature fields are deliberated properly through various graphical illustrations and different sets of flow parameters. However, the accurate datasets generated for the skin friction coefficient and local Nusselt number are presented separately in tabular displays, whose physical insights are discussed comprehensively via the slope linear regression method (SLRM). As main results, it is demonstrated that the higher values of the Casson viscoplastic parameter reduce significantly the fluid velocity within the boundary layer region, while a partial reverse tendency is observed near the stretching sheet as long as the wall thickness parameter is increased. Besides the previously mentioned hydrodynamical features, it is also depicted that the thermal field throughout the medium is enhanced considerably with the elevating values of these parameters.


2017 ◽  
Vol 11 ◽  
pp. 99-109 ◽  
Author(s):  
Christian John Etwire ◽  
Ibrahim Yakubu Seini ◽  
Rabiu Musah

The combined effect of suction and thermal conductivity on the boundary layer flow of oil–based nanofluid over a porous stretching surface has been investigated. Similarity techniques were employed in transforming the governing partial differential equations into a coupled third order ordinary differential equations. The higher third order ordinary differential equations were then reduced into a system of first order ordinary differential equations and solved numerically using the fourth order Runge-Kutta algorithm with a shooting method. The results were presented in tabular and graphically forms for various controlling parameters. It was found that increasing the thermal conductivities of the base fluid (oil) and nanoparticle size (CuO) of the nanofluid did not affect the velocity boundary layer thickness but depreciates with suction and permeability. The suction parameter and thermal conductivity of the base fluid also made the thermal boundary layer thinner.


Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 417
Author(s):  
K. Jagan ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
S. Rajan

The objective of this paper is to analyze the effect of thermal radiation on MHD mixed convection flow of a micropolar nanoliquid   towards a non-linear stretching surface with convective boundary condition. The governing equations are converted into non-linear    ordinary differential equations by using suitable similarity transformations. The homotopy analysis method is used for solving the non-linear ordinary differential equations. The temperature profiles increase due to increase in thermal radiation parameter. The microrotation   profile increases when boundary parameter is increased. Also, the skin friction coefficient and local Nusselt are plotted for various    parameters.  


2016 ◽  
Vol 13 (2) ◽  
pp. 165-177 ◽  
Author(s):  
P. Bala Anki Reddy

An analysis is carried out to investigate the steady two-dimensional magnetohydrodynamic boundary layer flow of a Casson fluid over an exponentially stretching surface in the presence of thermal radiation and chemical reaction. Velocity, thermal and solutal slips are considered instead of no-slip conditions at the boundary. Stretching velocity, wall temperature and wall concentration are considered in the exponential forms. The non-linear partial differential equations are converted into a system of non-linear ordinary differential equations by similarity transformations. The resultant non-linear ordinary differential equations are solved numerically by fourth order Runge-Kutta method along with shooting technique. The influence of various parameters on the fluid velocity, temperature, concentration, wall skin friction coefficient, the heat transfer coefficient and the Sherwood number have been computed and the results are presented graphically and discussed quantitatively. Comparisons with previously published works are performed on various special cases and are found to be in excellent agreement.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Noor Saeed Khan ◽  
Poom Kumam ◽  
Raees Khan

AbstractIn this paper, a numerical study of MHD steady flow due to a rotating disk with mixed convection, Darcy Forchheimer’s porous media, thermal radiation, and heat generation/absorption effects are explored. A strong magnetic field is applied in perpendicular direction to the flow which governs the Hall current effects. Homogeneous and heterogeneous reactions are also taken into account. For the simplification of partial differential equations (PDEs) into the nonlinear ordinary differential equations (ODEs), the method of generalized Von Karman similarity transformations is employed, and the resulting non-dimensional ordinary differential equations are solved by using the homotopy analysis method (HAM). Effects of different parameters on the axial, radial and tangential velocity profiles, temperature and concentration of chemical reaction profiles are analyzed and discussed. The present work’s remarkable finding is that with the expansion of nanoparticles size, dimensionless constant parameter, local Grashof number, porosity parameter, Hall current, and suction parameter, the nanofluid radial velocity is enhanced. For the higher values of magnetic field parameter, the tangential velocity and nanofluid temperature are enhanced. The magnetic field parameter and the disk thickness coefficient parameter have similar impacts on the axial velocity profile. Heterogeneous chemical reaction parameter decreases the concentration of chemical reaction profile. The nanoparticles volume fraction increases the concentration of chemical reaction profile. Furthermore, the present results are found to be in excellent agreement with previously published work in tabulated form.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Stanford Shateyi ◽  
Gerald T. Marewo

Abstract We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Wubshet Ibrahim ◽  
Dachasa Gamachu

This communication reports, the flow of Cu-water dusty nanofluid past a centrifugally stretching surface under the effect of second order slip and convective boundary conditions. The coupled nonlinear ordinary differential equations are get hold of from the partial differential equations which are derived from the conservation of momentum and energy of both nanofluid and dusty phases. Then, using apt resemblance transformation these ordinary differential equations were altered into a dimensionless form and then solved by bvp5c solver in Matlab software. The variation in velocity and temperature profiles of fluid and dusty phases for different parameters are thrash out in depth by figures and tables. The outcomes exhibit that the velocity profile of both fluid and dusty phases boot as the values of the dust particle volume fraction parameter is enlarged. Besides, the magnetic field parameter has similar effect on the velocity profile of both fluid and dusty phases. Also, the results illustrated that temperature profile of both Cu-water nanofluid and dusty particle phases are improved within an enhancement in the values of the temperature relaxation parameter, Cu-particle volume fraction, and Biot number. The results also confirm that for greater values of the magnetic field parameter the values of skin friction coefficient are enlarged for all values of the velocity ratio parameter.


Sign in / Sign up

Export Citation Format

Share Document