Modeling the volume characteristics of the heating area of the contact wire by a moving electric arc and their calculation in the MathCAD environment

Author(s):  
I.A. Kondrashov ◽  
Yu.G. Semyonov ◽  
A.D. Tsoi ◽  
D.A. Ketskalo
2018 ◽  
Vol 239 ◽  
pp. 01050 ◽  
Author(s):  
Sergey Klimenko ◽  
Vladimir Li

The paper considers the negative consequences of thermal softening of the contact wire material under the action of an electric arc, which is thermal wear. In order to determine the degree of softening of the contact wire in real time, the methodology for assessing the condition of the contact wire of electrified railways by the value of thermal wear is presented. The presented method is based on the criterial approach. The criteria for softening the material of the wire and the transition of the material to the liquid state are introduced. By comparing the amount of heat entering the wire in the event of an electric arc (with these criteria), the contact wire is diagnosed in terms of thermal wear. Calculations have been made using the proposed method; graphical dependences of the amount of heat entering the wire element on the current intensity of the electric arc for various times of its influence on the contact wire are constructed. A device for diagnosing the condition of the contact wire in terms of the amount of thermal wear is proposed, designed to record the place of occurrence of the electric arc, to collect and transmit the necessary initial data. The operating principle of the device is described and its structural diagram is given. The use of the method for assessing the condition of the contact wire in terms of the amount of thermal wear and the diagnostic device will make it possible to quantify the degree of thermal softening of the contact wire material in order to further determine its residual life.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042069
Author(s):  
Yu G Semenov ◽  
I A Kondrashov

Abstract The article is devoted to the study of the problem of electrified railways electric locomotive current collectors’ interaction violation with an aerial contact wire, accompanied by the occurrence of an electric arc. Current collection disorders, accompanied by arcing, have a destructive effect on the contacting elements, causing their thermal erosion. Places where current collection violations occur should be registered and diagnosed in a timely manner in order to prevent an emergency situation associated with burnout or breakage of the aerial contact wire. In order to further develop the system of technical diagnostics for current collection disorders accompanied by arcing, it is necessary to study the nature and parameters of the processes occurring during these violations. The main part of the article is devoted to the study of the area of heating the aerial contact wire by a moving electric arc. The characteristics describing the heated area are geometric parameters, including the area in the cross section of the wire and the volume of the area. To obtain the necessary data, the method of heat sources was applied, which is a mathematical model that describes the process of heat propagation in an aerial contact wire. The electric arc arising when the current collector breaks off is considered as a mobile heat source distributed over the aerial contact wire surface in the heating zone and having a limited radius of the heating spot. Based on the heat propagation process peculiarities inside the aerial contact wire, a method for calculating the volume of the heated area bounded by an isothermal surface of a certain temperature is presented. The heated area was visualized using the PTC MathCAD.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


2016 ◽  
Vol 104 (1) ◽  
pp. 102 ◽  
Author(s):  
Valentina Colla ◽  
Filippo Cirilli ◽  
Bernd Kleimt ◽  
Inigo Unamuno ◽  
Silvia Tosato ◽  
...  

2020 ◽  
pp. 67-78
Author(s):  
Nandan Kumar ◽  
Sainath Shrikant Pawaskar

Flash fire caused by electric arc is different than that caused by flammable liquids/fumes or combustible dusts. A suitable protective clothing for protection against electric arc-flash must be designed as per Indian weather conditions. Currently available garments are manufactured using two or three layers of woven/nonwoven combinations to achieve higher Hazard Risk Category (HRC) rating (level 3 and above). However, they are heavy and not comfortable to the end users. Savesplash® is a single layer inherent flame-retardant knitted fabric. Its arc rating was determined using ASTM standards. It achieved arc thermal performance value (ATPV) of 41 cal/cm2, breakopen threshold energy (E_BT) of 42 cal/cm2 and heat attenuation factor (HAF) of 94% when tested as per ASTM F1959/F1959M-14 which translated into an arc rating of 41 cal/cm2. This is equivalent to HRC level 4 ratings as per National Fire Protection Association’s NFPA 70E standard (USA). Further, cut and sewn gloves (HM-100) developed using Savesplash® fabric reinforced with leather on palm area achieved ATPV of 63 cal/cm2 and HAF of 94.5% when tested as per ASTM F2675/F2675M-13.


Sign in / Sign up

Export Citation Format

Share Document