A Dual-Band and Low-Cost Microstrip Patch Antenna for 5G Mobile Communications

2021 ◽  
Vol 36 (7) ◽  
pp. 824-829
Author(s):  
Fatih Kaburcuk ◽  
Gurkan Kalinay ◽  
Yiming Chen ◽  
Atef Elsherbeni ◽  
Veysel Demir

This paper investigates the numerical and experimental analysis of a low-cost and dual-band microstrip patch antenna for the fifth generation (5G) mobile communications. The numerical analysis of the proposed antenna is performed using the computational electromagnetic simulator (CEMS) software which is based on the finite-difference time-domain (FDTD) and CST software which is based on the finite integration technique (FIT). The performance of the proposed antenna designed and fabricated on a low-cost FR-4 substrate is verified with the simulated and measured results. The antenna operates at dual frequency bands which are 24 and 28 GHz. The antenna maximum gain values are 3.20 dBi and 3.99 dBi in the x-y plane at 24 and 28 GHz, respectively. The proposed antenna provides almost omni-directional patterns suitable for 5G mobile communication devices.

A small size and very thinwideband dipole microstrip patch antenna for dual frequency operation is designed and analysed in this paper. The dimension of the proposed antenna is 40×30×1.6 mm3 .The proposed antenna is designed using a low cost and reliable FR4 substrate. This FR4 substrate material has a thickness of 1.6 mm, dielectric constant of 4.4 and loss tangent of 0.02. The proposed antennaresonates at 2.19 GHz and 2.5 GHz frequencies with a -10 dB impedance bandwidth of 4.37 GHz, ranging from 1.8 GHz to 6.17 GHz.This shows the proposed antenna bandwidth is increased to 200%. The VSWR of the proposed antenna is less than 2 for entire operating frequency range. Radiation efficiency is above 70% at both of the resonance frequencies. A very low cross polarization is found at all resonance frequencies. CST Microwave Studio is used to design and analyse the proposed antenna.


Author(s):  
Akhilesh Kumar Pandey ◽  
Rajeev Singh

A dual frequency resonance antenna is proposed by means of a rectangular microstrip patch antenna with parasitic elements. Analysis is made using concepts of circuit theory and the measured and theoretical results are compared with simulation results obtained with IE3D simulation software. Error between experimental and theoretical and simulated values is within 1.5% and frequency ratio of the simulated, theoretical and experimental values is found to be 2.0


2018 ◽  
Vol 3 (1) ◽  
pp. 35 ◽  
Author(s):  
Cihat Şeker ◽  
Turgut Ozturk ◽  
Muhammet Tahir Güneşer

In this proposed paper, a single band microstrip patch antenna for fifth generation (5G) wireless application was presented. 28, 38, 60 and 73 GHz frequency bands have been allocated for 5G mobile communications by International Telecommunications Union (ITU). In this paper, we proposed an antenna, which is suitable for the millimeter wave frequency. The single band antenna consists of new slot loaded on the radiating patch with the 50 ohms microstrip line feeding used. This single band antenna was simulated on a FR4 dielectric substrate have relative permittivity 4.4, loss tangent 0.02, and height 1.6 mm. The antenna was simulated by Electromagnetic simulation, computer software technology High Frequency Structural Simulator. And simulated result on return loss, VSWR, radiation pattern and 3D gain was presented. The parameters of the results well coherent and proved the literature for millimeter wave 5G wireless application at 38 GHz.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Roberto Vincenti Gatti ◽  
Riccardo Rossi ◽  
Marco Dionigi

In this work, the issue of limited bandwidth typical of microstrip antennas realized on a single thin substrate is addressed. A simple yet effective design approach is proposed based on the combination of traditional single-resonance patch geometries. Two novel shaped microstrip patch antenna elements with an inset feed are presented. Despite being printed on a single-layer substrate with reduced thickness, both radiators are characterized by a broadband behavior. The antennas are prototyped with a low-cost and fast manufacturing process, and measured results validate the simulations. State-of-the-art performance is obtained when compared to the existing literature, with measured fractional bandwidths of 3.71% and 6.12% around 10 GHz on a 0.508-mm-thick Teflon-based substrate. The small feeding line width could be an appealing feature whenever such radiating elements are to be used in array configurations.


Sign in / Sign up

Export Citation Format

Share Document