scholarly journals Slope Stability Analysis Methods

Author(s):  
Javad Vaze Mobaraki ◽  

The presence of discontinuities, the inherent variability of the rock mass and discontinuity properties, and the uncertainties associated with directions and fcof the in-situstress makes the rock engineering problems challenging. The numerical modeling can assist the ground control engineers in designing and evaluating the stability of the excavations. If extensive geological and geotechnical data are available, then detailed predictions of deformation, stress and stability can be accomplished by performing numerical modeling. If not, still the numerical modeling can be used to perform parametric studies to gain insight into the possible ranges of responses of a system due to likely ranges of various parameters. The parametric studies can help to identify the key parameters and their impact on stability of underground excavations. The priorities of the material testing and site investigation can be set based on the selected key parameters from parametric studies. The most important modeling methods in stability analysis include finite element method, finite difference method, boundary element method and Distinct element method, which are used in three static, quasi-static and dynamic conditions and in both definite and probability modes. In this report, we investigate each of these methods their weaknesses and strengths.

2006 ◽  
Vol 34 ◽  
pp. 63-72
Author(s):  
A. Strouth ◽  
E. Eberhardt ◽  
O. Hungr

A "Total Slope Analysis" methodology, that combines several numerical techniques, is adopted to investigate an unstable rock slope in Washington State, USA. For this specific study, the distinct-element code UDEC is used to assess the stability and potential failure volume of the rockslide. Once the potential rockslide volume has been estimated and failure mechanism assessed, the runout path, distance and velocity are assessed using the dynamic or rheological flow model DAN3D. Site investigation and data reconnaissance plays an important role for both stages in the "Total Slope Analysis", including outcrop mapping, aerial photograph interpretation, scanline joint surveys and 3-D laser scanning. The results of the "Total Slope Analysis" can be directly applied to assessment and mitigation of the landslide hazard, greatly aiding engineering judgment by providing key qualitative and quantitative insights into the risk analysis.


Author(s):  
Zhen Cai ◽  
Guozhen Hu ◽  
◽  

This study provides an insight into the asymptotic stability of a drilling inclination system with a time-varying delay. An appropriate Lyapunov–Krasovskii functional (LKF) is essential for the stability analysis of the abovementioned system. In general, an LKF is constructed with each coefficient matrix being positive definite, which results in considerable conservatism. Herein, to relax the conditions of the derived criteria, a novel LKF is proposed by avoiding the positive-definite restriction of some coefficient matrices and introducing additional free matrices simultaneously. Subsequently, this relaxed LKF is applied to derive a less conservative stability criterion for the abovementioned system. Finally, the effect of reducing the conservatism of the proposed LKF is verified based on two examples.


2019 ◽  
Vol 7 (1) ◽  
pp. 45-48
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Анастасия Бойко ◽  
...  

In this article, general stability analysis is considered, in order to obtain the load-bearing capacity of the multy-storey building using finite element method. There are some graphical interpretations for FE results that illustrate safety factor for each structural member of the structure and different mode shapes with their corresponding frequencies. These results can be used to improve the structural member design method in case of progressive collapse possibility. The article provides recommendations for strengthening and design of structural member.


1998 ◽  
Vol 35 (3) ◽  
pp. 183-191
Author(s):  
Hiroaki TANAKA ◽  
Koji INOOKU ◽  
Masahiro MIYAZAKI ◽  
Yuji NAGASAKI

2014 ◽  
Vol 51 (3) ◽  
pp. 260-271 ◽  
Author(s):  
Hamid Batenipour ◽  
Marolo Alfaro ◽  
David Kurz ◽  
Jim Graham

The paper examines the behaviour of a highway embankment in an area of discontinuous permafrost about 18 km northwest of Thompson, Manitoba. Frequent maintenance has been required. Research involved site investigation, laboratory testing, installing instruments, data collection, and numerical modeling. The paper reports data from almost 3 years of observation. Measurements of ground temperatures suggest that formerly ice-rich foundation soil has thawed under the toe and side-slope. Approximate values of segregation potential have been back-calculated from observations of settlements and temperatures. Results provide insight into the nature and cause of deformations of the embankment.


Author(s):  
L. Forrai

This paper deals with the stability analysis of self-excited bending vibrations of linear symmetrical rotor-bearing systems caused by internal damping using the finite element method. The rotor system consists of uniform circular Rayleigh shafts with internal viscous damping, symmetrical rigid disks, and discrete undamped isotropic bearings. By combining the sensitivity method and the matrix representation of the rotor dynamic equations in complex form to assess stability, it is proved theoretically that the stability threshold speed and the corresponding whirling speed coincide with the first forward critical speed regardless of the magnitude of the internal damping.


2012 ◽  
Vol 226-228 ◽  
pp. 1462-1466 ◽  
Author(s):  
Ying Xue Sun ◽  
Song Chen ◽  
Shuai Ran Cheng

Mechanics behavior of unloading rock slope is essentially different from the natural rock slope . But, stability analysis of rocky slope during and after excavating still need these parameters and constitutional relation came from the natural rock slope, thus, the difference between the unloading rock mass and natural rock mass is neglected. The calculation result is quite different from the monitoring result. In order to analyze the stability of unloading rock slope properly, corresponding mechanics parameters including mechanics state, unloading degree and others should be determined and applied. In this paper, IEM - Sample Element Method and Interface Element Method expounded systematically and used to determine the corresponding mechanics parameters of a layered rock slope- Xishan slope of the Jiangyin Yangtze River Bridge. Then, IEM computer program based on Interface Element Method used to calculate the displacement of Xishan slope. Compare with displacement site-monitoring results, IEM is better than Finite Element Method.


Sign in / Sign up

Export Citation Format

Share Document