scholarly journals Capability of Uranium Heap Leaching From Gattar and El Missikat Area, Eastern Desert, Egypt: A Kinetic Approach

Author(s):  
Mohamed Nagar S ◽  
◽  
F A El-Sayed ◽  
W M Morsy ◽  
◽  
...  

Detailed studies of uranium heap leaching from different uranium mineralization resources situated in Eastern Desert of Egypt were investigated using sulfuric acid via batch experiments, followed by using the obtained optimum condition on bench scale leaching tests using small column. The previous optimum parameters were implemented on another large scale column in order to make more condition control and evaluate the time and reagents needed while transferring from small to large scale. The obtained data shows that leaching efficiency of GII mineralization attained about 78.3% with consumed acid amount about 34 kg/ton in a 44 days as leaching time, on the other hand, leaching efficiency of uranium from El-Missikat mineralization higher than GII mineralization and attained about 86.6% and the consumed as lower than G-II about 28kg/ton in a 40 days leaching time. Kinetics reaction models of column tests have been investigated to optimize the column leaching behavior. Based on the leaching results of the two mineralized occurrences, the rate of the uranium dissolution is controlled by both the chemical reaction and the diffusion reaction but diffusion reaction control was more predominate than a chemical reaction.

Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 113
Author(s):  
Stephan Daniel Schwoebel ◽  
Thomas Mehner ◽  
Thomas Lampke

Three-component systems of diffusion–reaction equations play a central role in the modelling and simulation of chemical processes in engineering, electro-chemistry, physical chemistry, biology, population dynamics, etc. A major question in the simulation of three-component systems is how to guarantee non-negative species distributions in the model and how to calculate them effectively. Current numerical methods to enforce non-negative species distributions tend to be cost-intensive in terms of computation time and they are not robust for big rate constants of the considered reaction. In this article, a method, as a combination of homotopy methods, modern augmented Lagrangian methods, and adaptive FEMs is outlined to obtain a robust and efficient method to simulate diffusion–reaction models with non-negative concentrations. Although in this paper the convergence analysis is not described rigorously, multiple numerical examples as well as an application to elctro-deposition from an aqueous Cu2+-(β-alanine) electrolyte are presented.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 381
Author(s):  
Mi Lin ◽  
Lixin Fu ◽  
Shakeel Ahmed ◽  
Qiong Wang ◽  
Yaoxian Zheng ◽  
...  

We propose a type of polarization-independent circulator based on a composite rod of ferrite and plasma materials in a two-dimensional photonic crystal (PhC) slab. Only one composite rod was set at the center of the structure to provide circulation for both TE- and TM-polarized waves. Additionally, to improve the performance of the circulator, three additional rods were inserted to improve the coupling condition between the center magneto-optical microcavity and the corresponding waveguides. Finite element method was used to calculate the characteristics of the structure and the Nelder–Mead optimization method was employed to obtain the optimum parameters. The results show that a low insertion loss (~0.22 dB) and high isolation (~14 dB) can be achieved in our structure for waves of both TE and TM polarizations. The idea presented here may be useful for designing compact polarization devices in large-scale integrated photonic circuits.


2021 ◽  
pp. 106964
Author(s):  
Hongbo Guo ◽  
Xiongbin Jia ◽  
Ningbo Zhao ◽  
Shuying Li ◽  
Hongtao Zheng ◽  
...  

Fuel ◽  
2021 ◽  
pp. 122599 ◽  
Author(s):  
Timothy I. Anderson ◽  
Anthony R. Kovscek

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bao Qin ◽  
Yexin Zhou ◽  
Zheng Zhong

PurposeA diffusion-reaction-deformation coupled model is employed and implemented as a user-defined element (UEL) subroutine in the commercial finite element software package ABAQUS.Design/methodology/approachChemical reaction and diffusion are treated as two distinct processes by introducing the extent of reaction and the diffusion concentration as two kinds of independent variables, for which the independent governing equations for chemical reaction and diffusion processes are obtained. Furthermore, an exponential form of chemical kinetics, instead of the linearly phenomenological relation, between the reaction rate and the chemical affinity is used to describe reaction process. As a result, complex chemical reaction can be simulated, no matter it is around or away from equilibrium.FindingsTwo numerical examples are presented, one for validation of the model and another for the modeling of the deflection of a plane caused by a chemical reaction.Originality/value1. Independent governing equations for diffusion and reaction processes are given. 2. An exponential relation between the reaction rate and its driving force is employed. 3. The UEL subroutine is used to implement the finite element procedure.


2020 ◽  
Vol 37 ◽  
pp. 101473 ◽  
Author(s):  
G. Ezzati ◽  
M.G. Healy ◽  
L. Christianson ◽  
K. Daly ◽  
O. Fenton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document