scholarly journals A Review: In – Silico Approaches in Predictive Toxicology

Author(s):  
Sachin M. Mendhi ◽  
Manoj S. Ghoti ◽  
Mandar A. Thool ◽  
Rinkesh M. Tekade

This article deals with the in – silico techniques for predicting the toxicity of chemical compounds. Toxicology is the branch of biology that deals with the study of adverse effect of chemical substances on the living organisms and the practice of treating and preventing such adverse effects. Predicting toxicity of a new drug to be produced is the first aim of preclinical trials. It is achieved by in-silico methods. There are several in - silico technique softwares which are used for the prediction of ADME and hence toxicity of drugs. In – silico methods involves the use of various softwares to calculate and then predict the toxicity of a compound by first determining its structural and pharmacokinetic and pharmacodynamic properties and then it correlates this information with already existing drugs and molecules and thus gives us conclusion. The article focuses on QSAR and its techniques, HQSAR, several other methods like structural alerts and rule-based models, chemical category and read across model, dose and time response model, virtual ligand screening, docking, 3D pharmacophore mapping, simulation approaches, PKPD models and several other approaches like bioinformatics. After reviewing and studying various in silico techniques the conclusion comes out to be that, in-silico methods of predictive toxicology are more better than in-vitro and in-vivo methods since they are much more safe (as animals are not harmed), economic, fast and accurate w.r.to, results/output in predicting toxicity of compounds by computational methods and hence are widely used in the production of new drug for accessing its toxicity

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


Shock ◽  
2020 ◽  
Vol 53 (5) ◽  
pp. 605-615
Author(s):  
Joseph E. Rupert ◽  
Daenique H. A. Jengelley ◽  
Teresa A. Zimmers

2018 ◽  
Vol 25 (28) ◽  
pp. 3286-3318 ◽  
Author(s):  
Kaja Bergant ◽  
Matej Janezic ◽  
Andrej Perdih

Background: The family of DNA topoisomerases comprises a group of enzymes that catalyse the induction of topological changes to DNA. These enzymes play a role in the cell replication machinery and are, therefore, important targets for anticancer drugs - with human DNA topoisomerase IIα being one of the most prominent. Active compounds targeting this enzyme are classified into two groups with diverse mechanisms of action: DNA poisons act by stabilizing a covalent cleavage complex between DNA and the topoisomerase enzyme, transforming it into a cellular toxin, while the second diverse group of catalytic inhibitors, provides novel inhibition avenues for tackling this enzyme due to frequent occurrence of side effects observed during the DNA poison therapy. Methods: Based on a comprehensive literature search we present an overview of available bioassays and in silico methods in the identification of human DNA topoisomerase IIα inhibitors. Results and Conclusion: A comprehensive outline of the available methods and approaches that explore in detail the in vitro mechanistic and functional aspects of the topoisomerase IIα inhibition of both topo IIα inhibitor groups is presented. The utilized in vitro cell-based assays and in vivo studies to further explore the validated topo IIα inhibitors in subsequent preclinical stages of the drug discovery are discussed. The potential of in silico methods in topoisomerase IIα inhibitor discovery is outlined. A list of practical guidelines was compiled to aid new as well experienced researchers in how to optimally approach the design of targeted inhibitors and validation in the preclinical drug development stages.


2018 ◽  
Vol 52 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Praveen Kumar Pasala ◽  
Ramesh Alluri ◽  
Sri Chandana Mavulati ◽  
Raghu Prasad Mailavaram ◽  
Khasim Shaik ◽  
...  

2009 ◽  
Vol 98 (12) ◽  
pp. 4429-4468 ◽  
Author(s):  
Jurgen Mensch ◽  
Julen Oyarzabal ◽  
Claire Mackie ◽  
Patrick Augustijns

2020 ◽  
Author(s):  
Hana Majaron ◽  
Boštjan Kokot ◽  
Aleksandar Sebastijanović ◽  
Carola Voss ◽  
Rok Podlipec ◽  
...  

AbstractNanomaterial-induced diseases cannot be reliably predicted because of the lack of clearly identified causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modelling, we have here determined that the long-lasting response to a single exposure originates in the counteracting of a newly discovered nanomaterial quarantining and nanomaterial cycling among different lung cell types. This allows us to predict the nanomaterial-induced spectrum of lung inflammation using only in vitro measurements and in silico modelling. Besides its profound implications for cost-efficient animal-free predictive toxicology, our work also paves the way to a better mechanistic understanding of nanomaterial- induced cancer, fibrosis, and other chronic diseases.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


Sign in / Sign up

Export Citation Format

Share Document