scholarly journals Protective Effect of A2B Receptor Antagonist (TRP 1) on Acetic Acid Induced Ulcerative Colitis in Rats: in vitro, in vivo and in silico Methods

2018 ◽  
Vol 52 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Praveen Kumar Pasala ◽  
Ramesh Alluri ◽  
Sri Chandana Mavulati ◽  
Raghu Prasad Mailavaram ◽  
Khasim Shaik ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


Author(s):  
Thriveni Vasanth Kumar ◽  
Manjunatha H. ◽  
Rajesh Kp

Objective: Dietary curcumin and capsaicin are well known for their health beneficial potencies. The current study was done to assess the anti-inflammatory activity of curcumin, capsaicin and their combination by employing in vitro and in vivo models.Methods: We investigated the protective effect of curcumin, capsaicin and their combination using in vitro heat induced human red blood cell (HRBC) membrane stabilisation, in vivo 3% agar induced leukocyte mobilisation and acetic acid induced vascular permeability assay.Results: Curcumin, capsaicin and their combination exhibited concentration dependent protective effect against heat-induced HRBC membrane destabilisation, while combined curcumin and capsaicin restored 87.0±0.64 % membrane stability and it is found to be better than curcumin, capsaicin and diclofenac sodium (75.0±0.25. 72±0.9 and 80.0±0.31 %) protective effect. In agar suspension induced leukocyte mobilization assay, the combined curcumin and capsaicin had shown 39.5±1.58 % of inhibition compared to individual curcumin and capsaicin, which showed moderate inhibition of 16.0±3.14 and 21.6±2.17 % respectively. Besides, the combined curcumin and capsaicin had shown highly significant inhibition of acetic acid-induced vascular permeability in rats (62.0±3.14 %), whereas individual curcumin and capsaicin showed moderate inhibition of vascular permeability with 36.0±2.41 and 43.0±1.92 % respectively.Conclusion: This study demonstrates the significant anti-inflammatory property of combined curcumin and capsaicin at half of the individual concentration of curcumin and capsaicin.


Shock ◽  
2020 ◽  
Vol 53 (5) ◽  
pp. 605-615
Author(s):  
Joseph E. Rupert ◽  
Daenique H. A. Jengelley ◽  
Teresa A. Zimmers

2014 ◽  
Vol 86 (5) ◽  
pp. 593-608 ◽  
Author(s):  
Ashley J. Parks ◽  
Michael P. Pollastri ◽  
Mark E. Hahn ◽  
Elizabeth A. Stanford ◽  
Olga Novikov ◽  
...  

2018 ◽  
Vol 25 (28) ◽  
pp. 3286-3318 ◽  
Author(s):  
Kaja Bergant ◽  
Matej Janezic ◽  
Andrej Perdih

Background: The family of DNA topoisomerases comprises a group of enzymes that catalyse the induction of topological changes to DNA. These enzymes play a role in the cell replication machinery and are, therefore, important targets for anticancer drugs - with human DNA topoisomerase IIα being one of the most prominent. Active compounds targeting this enzyme are classified into two groups with diverse mechanisms of action: DNA poisons act by stabilizing a covalent cleavage complex between DNA and the topoisomerase enzyme, transforming it into a cellular toxin, while the second diverse group of catalytic inhibitors, provides novel inhibition avenues for tackling this enzyme due to frequent occurrence of side effects observed during the DNA poison therapy. Methods: Based on a comprehensive literature search we present an overview of available bioassays and in silico methods in the identification of human DNA topoisomerase IIα inhibitors. Results and Conclusion: A comprehensive outline of the available methods and approaches that explore in detail the in vitro mechanistic and functional aspects of the topoisomerase IIα inhibition of both topo IIα inhibitor groups is presented. The utilized in vitro cell-based assays and in vivo studies to further explore the validated topo IIα inhibitors in subsequent preclinical stages of the drug discovery are discussed. The potential of in silico methods in topoisomerase IIα inhibitor discovery is outlined. A list of practical guidelines was compiled to aid new as well experienced researchers in how to optimally approach the design of targeted inhibitors and validation in the preclinical drug development stages.


RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 64865-64877 ◽  
Author(s):  
Mohamed-Amine Jabri ◽  
Kais Rtibi ◽  
Haifa Tounsi ◽  
Karim Hosni ◽  
Abdelaziz Souli ◽  
...  

We aimed in the present study to investigate the protective effect of a myrtle (Myrtus communisL.) berry seed aqueous extract (MBSAE) on acetic acid (AA)-induced colitis in rats as well as the mechanism implicated in this coli-protection.


Author(s):  
Sachin M. Mendhi ◽  
Manoj S. Ghoti ◽  
Mandar A. Thool ◽  
Rinkesh M. Tekade

This article deals with the in – silico techniques for predicting the toxicity of chemical compounds. Toxicology is the branch of biology that deals with the study of adverse effect of chemical substances on the living organisms and the practice of treating and preventing such adverse effects. Predicting toxicity of a new drug to be produced is the first aim of preclinical trials. It is achieved by in-silico methods. There are several in - silico technique softwares which are used for the prediction of ADME and hence toxicity of drugs. In – silico methods involves the use of various softwares to calculate and then predict the toxicity of a compound by first determining its structural and pharmacokinetic and pharmacodynamic properties and then it correlates this information with already existing drugs and molecules and thus gives us conclusion. The article focuses on QSAR and its techniques, HQSAR, several other methods like structural alerts and rule-based models, chemical category and read across model, dose and time response model, virtual ligand screening, docking, 3D pharmacophore mapping, simulation approaches, PKPD models and several other approaches like bioinformatics. After reviewing and studying various in silico techniques the conclusion comes out to be that, in-silico methods of predictive toxicology are more better than in-vitro and in-vivo methods since they are much more safe (as animals are not harmed), economic, fast and accurate w.r.to, results/output in predicting toxicity of compounds by computational methods and hence are widely used in the production of new drug for accessing its toxicity


Author(s):  
Arya V S ◽  
S K Kanthlal

Background: Adverse effects associated with current therapy for Ulcerative colitis (UC) over prolonged treatment periods and the high relapse rate limit their use. Incorporating fruits as regular diet has beneficial role in the management of UC. Phloretin, a dihydrochalcone of apple reported for its anti-oxidant and anti-inflammatory effects. Our study aims to evaluate the effectiveness of phloretin on experimentally induced ulcerative colitis in rats. Methods: In vitro study was performed using Raw 264.7 cells stimulated with LPS (1µg/mL) and in in-vivo study, colitis was induced by intra rectal administration of 4% Acetic acid. Phloretin (50 mg/kg) was given orally for 3 days to Wistar rats after induction for post-treatment group and 1 day before induction to pre-treatment group Macroscopical, biochemical and histopathological evaluations were performed to assess the effectiveness. Results: A concentration dependent inhibition of MPO and iNOS activity was obtained in LPS stimulated neutrophil cells. Phloretin exerted ameliorative effect in both pre and post treatment groups by restoring plasma ALP and LDH level and reduce inflammatory markers like myeloperoxidase, nitric oxide and eosinophil peroxidase level as well as down regulates colon iCAM-1 gene in acetic acid induced ulcerative colitis in rats. Antioxidative potency was confirmed by restoring tissue GSH level. Phloretin prevents mucosal damage and it was confirmed by histopathological analysis Conclusion: Collectively, these findings provide an evidence that phloretin might be useful as a natural therapeutic agent in the management of UC as well as may pose a promising outcome for the future clinical usage.


Sign in / Sign up

Export Citation Format

Share Document