New Hypertensive Retinopathy Grading Based on the Ratio of Artery Venous Diameter from Retinal Image

2021 ◽  
pp. 221-227
Author(s):  
Bambang Krismono Triwijoyo ◽  
Boy Subirosa Sabarguna ◽  
Widodo Budiharto ◽  
Edi Abdurachman

Medical research indicated that narrowing of the retinal blood vessels might be an early indicator of cardiovascular diseases; one of them is hypertensive retinopathy. This paper proposed the new staging method of hypertensive retinopathy by measure the ratio of diameter artery and vein (AVR). The dataset used in this research is the public Messidor color fundus image dataset. The proposed method consists of image resizing using bicubic interpolation, optic disk detection, a region of interest computation, vessel diameter measuring, AVR calculation, and grading the new categories of Hypertensive Retinopathy based on Keith-Wagener-Barker categories. The experiments show that the proposed method can determine the stage of hypertensive retinopathy into new categories.

2014 ◽  
Vol 22 (03) ◽  
pp. 413-428 ◽  
Author(s):  
M. PONNIBALA ◽  
S. VIJAYACHITRA

One of the greatest concerns to the personnel in the current health care sector is the severe progression of diabetes. People can often have diabetes and be completely unaware as the symptoms seem harmless when they are seen on their own. Diabetic retinopathy (DR) is an eye disease that is associated with long-standing diabetes. Retinopathy can occur with all types of diabetes and can lead to blindness if left untreated. The conventional method followed by ophthalmologists is the regular testing of the retina. As this method takes time and energy of the ophthalmologists, a new feature-based automated technique for classification and detection of exudates in color fundus image is proposed in this paper. This method reduces the work of the professionals while examining every fundus image rather than only on abnormal image. The exudates are detected from the color fundus image by applying a few pre-processing techniques that remove the optic disk and similar blood vessels using morphological operations. The pre-processed image was then applied for feature extraction and these features were utilized for classification purpose. In this paper, a novel classification technique such as self-adaptive resource allocation network (SRAN) and meta-cognitive neural network (McNN) classifier is employed for classification of images as exudates, their severity and nonexudates. SRAN classifier makes use of self-adaptive thresholds to choose the appropriate training samples and removes the redundant samples to prevent over-training. These selected samples are availed to improve the classification performance. McNN classifier employs human-like meta-cognition to regulate the sequential learning process. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. It is therefore evident that the implementation of human meta-cognitive learning principle improves efficient learning.


2015 ◽  
Vol 23 (4) ◽  
pp. 1187-1195 ◽  
Author(s):  
邹北骥 ZOU Bei-ji ◽  
张思剑 ZHANG Si-jian ◽  
朱承璋 ZHU Cheng-zhang

2022 ◽  
Author(s):  
Imane Mehidi ◽  
Djamel Eddine Chouaib Belkhiat ◽  
Dalel Jabri

Abstract The main purpose of identifying and locating the vessels of the retina is to specify the various tissues from the vascular structure of the retina (which could be differencied between wide or tight) of the background of the fundus image. There exist several segmentation techniques that are spreading to divide the retinal vessels, depending on the issues and complexity of the retinal images. Fuzzy c-means is one of the most often used algorithms for retinal image segmentation due to its effectiveness and speed. This paper analyzes the performance of improved FCM algorithms for retinal image segmentation in terms of their ability and capability in segmenting and isolating blood vessels. The process we followed in our paper consists of two phases. Firstly, the pre-processing phase, where the green channel is taken for the color image of the retina. Contrast enhancement is performed through CLAHE , proceeded by applying bottom-hat filtering to bottom-hat filtering is applied with the purpose to define the region of interest. Secondly, in the segmentation phase the obtained image is segmented using FCM algorithms. The algorithms chosen for this study are: FCM, EnFCM, SFCM, FGFCM, FRFCM, DSFCM_N, FCM_SICM and, SSFCM performed on DRIVE and STARE databases. Experiments accomplished on DRIVE and STARE databases demonstrate that the DSFCM_N algorithm achieves better results on the DRIVE database, whereas the FGFCM algorithm provides better results on the STARE database in term of accuracy. Concerning time consumption. The FRFCM algorithm requires less time than other algorithms in the segmentation of retinal images.


2013 ◽  
Author(s):  
Di Xiao ◽  
Jane Lock ◽  
Javier Moreno Manresa ◽  
Janardhan Vignarajan ◽  
Mei-Ling Tay-Kearney ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2547 ◽  
Author(s):  
Wenxin Dai ◽  
Yuqing Mao ◽  
Rongao Yuan ◽  
Yijing Liu ◽  
Xuemei Pu ◽  
...  

Convolution neural network (CNN)-based detectors have shown great performance on ship detections of synthetic aperture radar (SAR) images. However, the performance of current models has not been satisfactory enough for detecting multiscale ships and small-size ones in front of complex backgrounds. To address the problem, we propose a novel SAR ship detector based on CNN, which consist of three subnetworks: the Fusion Feature Extractor Network (FFEN), Region Proposal Network (RPN), and Refine Detection Network (RDN). Instead of using a single feature map, we fuse feature maps in bottom–up and top–down ways and generate proposals from each fused feature map in FFEN. Furthermore, we further merge features generated by the region-of-interest (RoI) pooling layer in RDN. Based on the feature representation strategy, the CNN framework constructed can significantly enhance the location and semantics information for the multiscale ships, in particular for the small ships. On the other hand, the residual block is introduced to increase the network depth, through which the detection precision could be further improved. The public SAR ship dataset (SSDD) and China Gaofen-3 satellite SAR image are used to validate the proposed method. Our method shows excellent performance for detecting the multiscale and small-size ships with respect to some competitive models and exhibits high potential in practical application.


2019 ◽  
Vol 2 (3) ◽  
pp. 43-67
Author(s):  
Sanyukta Chetia ◽  
SR Nirmala

Purpose: The study of retinal blood vessel morphology is of great importance in retinal image analysis. The retinal blood vessels have a number of distinct features such as width, diameter, tortuosity, etc. In this paper, a method is proposed to measure the tortuosity of retinal blood vessels obtained from retinal fundus images. Tortuosity is a situation in which blood vessels become tortuous, that is, curved or non-smooth. It is one of the earliest changes that occur in blood vessels in some retinal diseases. Hence, its detection at an early stage can prevent the progression of retinal diseases such as diabetic retinopathy, hypertensive retinopathy, retinopathy of prematurity, etc. The present study focuses on the measurement of retinal blood vessel tortuosity for the analysis of hypertensive retinopathy. Hypertensive retinopathy is a condition in which the retinal vessels undergo changes and become tortuous due to long term high blood pressure. Early recognition of hypertensive retinopathy signs remains an important step in determining the target-organ damage and risk assessment of hypertensive patients. Hence, this paper attempts to estimate tortuosity using image-processing techniques that have been tested on artery and vein segments of retinal images. Design: Image processing-based model designed to measure blood vessel tortuosity. Methods: In this paper, a novel image processing-based model is proposed for tortuosity measurement. This parameter will be helpful for analyzing hypertensive retinopathy. To test the eff ectiveness of the system in determining tortuosity, the method is first applied on a set of synthetically generated blood vessels. Then, the method is repeated on blood vessel (both artery and vein) segments extracted from retinal images collected from publicly available databases and on images collected from a local eye hospital. The blood vessel segment images that are used in the method are binary images where blood vessels are represented by white pixels (foreground), while black pixels represent the background. Vessels are then classified into normal, moderately tortuous, and severely tortuous by following the analysis performed on the images in the Retinal Vessel Tortuosity Data Set (RET-TORT) obtained from BioIm Lab, Laboratory of Biomedical Imaging (Padova, Italy). This database consists of 30 artery segments and 30 vein segments, which were manually ordered on the basis of increasing tortuosity by Dr. S. Piermarocchi, a retinal specialist belonging to the Department of Ophthalmology of the University of Padova (Italy). The artery and vein segments with the fewest number of turns are given a low tortuosity ranking, while those with the greatest number of turns are given a high tortuosity ranking by the expert. Based on this concept, our proposed method defines retinal image segments as normal when they present the fewest number of twists/turns, moderately tortuous when they present more twists/turns than normal but fewer than severely tortuous vessels, and severely tortuous when they present a greater number of twists/turns than moderately tortuous vessels. On implementing our image processing-based method on binary blood vessel segment images that are represented by white pixels, it is found that the vessel pixel (white pixels) count increases with increasing vessel tortuosity. That is, for normal blood vessels, the white pixel count is less compared to moderately tortuous and severely tortuous vessels. It should be noted that the images obtained from the different databases and from the local hospital for this experiment are not hypertensive retinopathy images. Instead, they are mostly normal eye images and very few of them show tortuous blood vessels. Results: The results of the synthetically generated vessel segment images from the baseline for the evaluation of retinal blood vessel tortuosity. The proposed method is then applied on the retinal vessel segments that are obtained from the DRIVE and HRF databases, respectively. Finally, to evaluate the capability of the proposed method in determining the tortuosity level of the blood vessels, the method is tested with a standard tortuous database, namely, the RET-TORT database. The results are then compared with the tortuosity level mentioned in the database. It was found that our method is able to classify blood vessel images as normal, moderately tortuous, and severely tortuous, with results closely matching the clinical ordering provided by the expert in the RET-TORT database. Subjective evaluation was also performed by research scholars and postgraduate students to cross-validate the results. Conclusion: The close correlation between the tortuosity evaluation using the proposed method and the clinical ordering of retinal vessels as provided by the retinal specialist in the RET-TORT database shows that, although simple, this method can evaluate the tortuosity of vessel segments effectively.  


Sign in / Sign up

Export Citation Format

Share Document