Historical Changes in Large River Fish Assemblages of the Americas

<em>Abstract.</em>—The main channel of the Hudson River is a tidal estuary from its mouth in New York Harbor to Troy, New York, 247 km upstream. It drains about 35,000 km<sup>2</sup> and is an important navigational, commercial, and recreational system. Since the arrival of European settlers over 400 years ago, it has undergone numerous environmental changes. These changes have included channel maintenance by dredging, wholesale dumping of industrial and domestic wastes, scattered in-basin urbanization and shoreline development, deforestation of the watershed and an increase in agriculture, and water removal for commercial, industrial, and agricultural needs. In addition, the biota of the river has supported commercial and recreational harvesting, exotic species have become established, and habitats have become fragmented, replaced, changed in extent, or isolated. The tidal portion of the Hudson River is among the most-studied water bodies on Earth. We use data from surveys conducted in 1936, the 1970s, the 1980s, and the 1990s to examine changes in fish assemblages and from other sources dating back to 1842. The surveys are synoptic but use a variety of gears and techniques and were conducted by different researchers with different study goals. The scale of our assessment is necessarily coarse. Over 200 species of fish are reported from the drainage, including freshwater and diadromous species, estuarine forms, certain life history stages of primarily marine species, and marine strays. The tidal Hudson River fish assemblages have responded to the environmental changes of the last century in several ways. Several important native species appear to be in decline (e.g., rainbow smelt <em>Osmerus mordax </em>and Atlantic tomcod <em>Microgadus tomcod</em>), others, once in decline, have rebounded (e.g., striped bass <em>Morone saxatilis</em>), and populations of some species seem stable (e.g., spottail shiner <em>Notropis hudsonius</em>). No native species is extirpated from the system, and only one, shortnose sturgeon <em>Acipenser brevirostrum</em>, is listed as endangered. The recent establishment of the exotic zebra mussel <em>Dreissena polymorpha </em>may be shifting the fish assemblage away from openwater fishes (e.g., <em>Alosa</em>) and toward species associated with vegetation (e.g., centrarchids). In general, the Hudson River has seen an increase in the number and importance of alien species and a change in dominant species.

<em>Abstract.</em>—The Hudson River Estuary (defined here as the Hudson River drainage and New York Harbor) is home to a large and diverse ichthyofauna. Estimates of species richness reflect both their geographic boundaries and time periods. The most complete estimate is for the Hudson River drainage north of the southern tip of Manhattan, where, as of 2005, 212 fish species have been recorded. This includes 11 new forms not reported in the most recently published tally (1990). We categorize the fishes of the Hudson River drainage as derived from 12 zoogeographic or anthropogenic sources (including species for which we make no judgment [<em>n </em>= 26]), the largest contributions from which include temperate marine strays (<em>n </em>= 65), introduced species (<em>n </em>= 28), and freshwater species that survived Pleistocene glaciations in Atlantic coastal refugia (<em>n </em>= 21). Additional species appear to have invaded from the Mississippi refugia, some naturally (<em>n </em>= 11) and some later, via canals (<em>n </em>= 11). Only ten diadromous fishes occur in the estuary, but many of these are, or have been, commercially and recreationally important (e.g., Atlantic sturgeon <em>Acipenser oxyrinchus</em>, American shad <em>Alosa sapidissima</em>, and striped bass <em>Morone saxatilis</em>). Extremely high seasonal temperature changes in the main-channel Hudson River foster a seasonally dynamic ichthyofauna with relatively few species occurring year round. However, the small number of resident estuarine fishes (<em>n </em>= 8) often occur in high abundances. Species richness peaks between June and September and reaches a minimum in winter. Long-term data indicate that although species richness has increased with the additions of new species, diversity is decreasing because of the decrease in population size of certain species, especially native cyprinids. The Hudson estuary hosts a population of one federally endangered species, shortnose sturgeon <em>Acipenser brevirostrum</em>, which is flourishing. Only one species, the anadromous rainbow smelt <em>Osmerus mordax </em>appears to have become extirpated in the Hudson Estuary.


2003 ◽  
Vol 60 (12) ◽  
pp. 1552-1574 ◽  
Author(s):  
Charles R Bronte ◽  
Mark P Ebener ◽  
Donald R Schreiner ◽  
David S DeVault ◽  
Michael M Petzold ◽  
...  

Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.


2018 ◽  
Vol 96 (7) ◽  
pp. 739-747 ◽  
Author(s):  
K.T. Sheppard ◽  
B.J. Hann ◽  
G.K. Davoren

The second largest inland walleye (Sander vitreus (Mitchill, 1818)) and sauger (Sander canadensis (Griffith and Smith, 1834)) fishery in Canada is found in Lake Winnipeg, Manitoba. To manage the fishery for a sustainable future, the growth and condition of these fish must be understood. Objectives were to (1) examine baseline growth and condition of walleye and sauger in Lake Winnipeg, (2) evaluate variation between the North and South basins, and (3) contribute observational findings on the distribution of dwarf walleye. Gill nets were set to catch walleye, sauger, and dwarf walleye throughout both basins at various locations and in all seasons during 2010 and 2011. North Basin walleye and sauger had higher growth rates and condition relative to the South Basin. This may be due to differential exploitation rates or diets such as the consumption of invasive rainbow smelt (Osmerus mordax (Mitchell, 1814)) in the North Basin and not in the South Basin. Dwarf walleye were observed more frequently in the South Basin than in the North Basin. Overall, this study provides important baseline data on the growth and condition of walleye and sauger populations prior to invasion of the spiny waterflea (Bythotrephes longimanus Leydig, 1860) and zebra mussels (Dreissena polymorpha (Pallas, 1771)).


2009 ◽  
Vol 66 (8) ◽  
pp. 1199-1215 ◽  
Author(s):  
David M. Warner ◽  
Jeffrey S. Schaeffer ◽  
Timothy P. O’Brien

Spatial patterns in the biomass of pelagic fish in Lake Huron have persisted over 10 years even though biomass decreased 86% and the fish community shifted from dominance by non-native species (rainbow smelt, Osmerus mordax ) to dominance by native species (bloater, Coregonus hoyi ). Based on multivariate analyses of acoustic biomass data and abiotic variables from the years 1997, 2004, 2005, and 2007, the strength of relationships between abiotic variables (primarily bottom depth) and fish community composition gradients decreased with fish biomass, suggesting that at high biomass, the influence of the measured abiotic variables is minimal. We observed consistently higher biomass in the North Channel and Georgian Bay than in the Main Basin, and as a result, we conclude that these smaller basins are likely important contributors to lakewide fish biomass, production, and dynamics. These results suggest that at current biomass levels, efforts to understand ecology, population dynamics, and lakewide abundance need to incorporate the effects of depth and geographic variation on fish distributions and ecology.


2010 ◽  
Vol 25 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Marc A. Chalupnicki ◽  
H. George Ketola ◽  
Michael H. Zehfus ◽  
Jonathan R. Crosswait ◽  
Jacques Rinchard ◽  
...  

<em>Abstract.</em>—Parcel by parcel, urban/suburban development is one of the most active converters of land in the Hudson River Valley in New York State. We are taking an integrative approach to understanding the drivers of and responses to urbanization, by studying how economy drives land use change and how that, in turn, affects downstream indicators of ecosystem state. The ultimate goal of the project is to provide a tool for policymakers, illustrating consequences of different development strategies. In this paper, we discuss synoptic ecological assessments of two major Hudson River tributaries in Dutchess County, the Wappinger Creek and Fishkill Creek watersheds. Physical, chemical, geographic, and biotic indices are compiled, creating a multivariate data set. These data, when set into a geographic information database, provide a spatial response to land use. Application of a regionally calibrated index of biotic integrity showed little relationship to urbanization, although some component metrics indicated a response. Chemical or biogeochemical indicators were more reflective of urbanization gradients. A hierarchy of responses, beginning with physicochemical and moving up to fish assemblages, reflected decreasing responses to urbanization. However, fish densities and the stable isotopic ratios of nitrogen determined in a sentinel species (eastern blacknose dace <em>Rhinichthys atratulus</em>) were significantly affected by urbanization. Longitudinal gradients of elevation were identified as strong drivers of development, potentially confounding relationships of land-use attributes and ecological responses.


1981 ◽  
Vol 38 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Larry B. Crowder ◽  
John J. Magnuson ◽  
Stephen B. Brandt

The potential for ecological segregation of Lake Michigan fishes was examined by comparing diets and thermal habitat use of common species. Samples were collected by bottom trawling (N = 68) off Grand Haven, Michigan, September 7–13, 1977. Five common species exhibited complementarity in the use of food and thermal habitat resources. During the day, adult alewife (Alosa pseudoharengus), and rainbow smelt (Osmerus mordax) had similar diets but occupied somewhat different thermal habitats. Young-of-the-year (YOY) alewives segregated from adult alewife and rainbow smelt on both habitat and food. Spottail shiner (Notropis hudsonius), YOY alewives, and yellow perch (Perca flavescens) used similar thermal habitats but fed on different prey. Trout-perch (Percopsis osmiscomaycus) tended to segregate from the others based on both food and thermal habitat but may experience diffuse competition. Adults of the three native species consume entirely different prey than exotic alewife and rainbow smelt. The native species which declined during the invasion of alewife and rainbow smelt were those with apparently similar habitat and food requirements to the exotics. These data suggest that competition is important in maintaining the structure of the Lake Michigan fish community.Key words: competition, fishes, food, habitat, Lake Michigan, predation, temperature


<em>Abstract.</em>—Fish assemblages in the Verde River, Arizona have changed markedly over the last quarter century. Nonnative fishes increase from headwaters toward the mouth and individual native species decrease. River hydrograph and the introduction of nonnative species appear to be the major factors determining fish assemblages, although information is lacking on water quality and other land management impacts. During floods, native species dominated fish assemblages. By contrast, during droughts and sustained base flows, nonnative fishes increased. The threatened spikedace <em>Meda fulgida </em>has been collected only in the uppermost reach of this desert river and, even here, has been absent since 1997. Five other native species also have become less abundant or rare. Continued monitoring of fish assemblages, comparison with another large southwestern river, the Gila, and aggressive management are critical to sustain the native fish component of this river.


Sign in / Sign up

Export Citation Format

Share Document