Historical Changes in Large River Fish Assemblages of the Americas

<em>Abstract.</em>—Fish assemblages in the Verde River, Arizona have changed markedly over the last quarter century. Nonnative fishes increase from headwaters toward the mouth and individual native species decrease. River hydrograph and the introduction of nonnative species appear to be the major factors determining fish assemblages, although information is lacking on water quality and other land management impacts. During floods, native species dominated fish assemblages. By contrast, during droughts and sustained base flows, nonnative fishes increased. The threatened spikedace <em>Meda fulgida </em>has been collected only in the uppermost reach of this desert river and, even here, has been absent since 1997. Five other native species also have become less abundant or rare. Continued monitoring of fish assemblages, comparison with another large southwestern river, the Gila, and aggressive management are critical to sustain the native fish component of this river.

<em>Abstract.</em>—The Virgin–Moapa River system supports nine native fish species or subspecies, of which five are endemic. Woundfin <em>Plagopterus argentissimus </em>and Virgin River chub <em>Gila seminuda </em>are endemic to the main-stem Virgin River, whereas cooler and clearer tributaries are home to the Virgin spinedace <em>Lepidomeda mollispinis</em>. Moapa dace <em>Moapa coriacea </em>and Moapa White River springfish <em>Crenichthys baileyi moapae </em>are found in thermal springs that form the Moapa River, and Moapa speckled dace <em>Rhinichthys osculus moapae </em>is generally found below the springs in cooler waters. The agricultural heritage of the Virgin–Moapa River system resulted in numerous diversions that increased as municipal demands rose in recent years. In the early 1900s, trout were introduced into some of the cooler tributary streams, adversely affecting Virgin spinedace and other native species. The creation of Lake Mead in 1935 inundated the lower 80 km of the Virgin River and the lower 8 km of the Moapa River. Shortly thereafter, nonnative fishes invaded upstream from Lake Mead, and these species have continued to proliferate. Growing communities continue to compete for Virgin River water. These anthropogenic changes have reduced distribution and abundance of the native Virgin–Moapa River system fish fauna. The woundfin, Virgin River chub, and Moapa dace are listed as endangered, and the Virgin spinedace has been proposed for listing. In this paper we document how the abundance of these species has declined since the Endangered Species Act of 1973. Currently, there is no strong main-stem refugium for the Virgin River native fishes, tributary refugia continue to be shortened, and the Moapa River native fishes continue to be jeopardized. Recovery efforts for the listed and other native fishes, especially in the Virgin River, have monitored the declines, but have not implemented recovery actions effective in reversing them.


Author(s):  

<em>Abstract.</em>—The Willamette River is Oregon’s largest river, with a basin area of 29,800 km<sup>2</sup> and a mean annual discharge of 680 m<sup>3</sup>/s. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and boating. Following basin-wide secondary waste treatment and low-flow augmentation, water quality markedly improved, salmon runs returned, and recreational uses increased. However, water pollution remains a problem as do physical habitat alterations, flow modification, and alien species. Fish assemblages in the main-stem Willamette River were sampled systematically, but with different gear, in the summers of 1945, 1983, and 1999. In the past 53 years, tolerant species occurrences decreased and intolerant species occurrences increased. In the past 20 years, alien fishes have expanded their ranges in the river, and four native fish species have been listed as threatened or endangered. We associate these changes with improved water quality between 1945 and 1983, fish migrations, altered flow regimes and physical habitat structure, and more extensive sampling.


<em>Abstract.</em>—The main channel of the Hudson River is a tidal estuary from its mouth in New York Harbor to Troy, New York, 247 km upstream. It drains about 35,000 km<sup>2</sup> and is an important navigational, commercial, and recreational system. Since the arrival of European settlers over 400 years ago, it has undergone numerous environmental changes. These changes have included channel maintenance by dredging, wholesale dumping of industrial and domestic wastes, scattered in-basin urbanization and shoreline development, deforestation of the watershed and an increase in agriculture, and water removal for commercial, industrial, and agricultural needs. In addition, the biota of the river has supported commercial and recreational harvesting, exotic species have become established, and habitats have become fragmented, replaced, changed in extent, or isolated. The tidal portion of the Hudson River is among the most-studied water bodies on Earth. We use data from surveys conducted in 1936, the 1970s, the 1980s, and the 1990s to examine changes in fish assemblages and from other sources dating back to 1842. The surveys are synoptic but use a variety of gears and techniques and were conducted by different researchers with different study goals. The scale of our assessment is necessarily coarse. Over 200 species of fish are reported from the drainage, including freshwater and diadromous species, estuarine forms, certain life history stages of primarily marine species, and marine strays. The tidal Hudson River fish assemblages have responded to the environmental changes of the last century in several ways. Several important native species appear to be in decline (e.g., rainbow smelt <em>Osmerus mordax </em>and Atlantic tomcod <em>Microgadus tomcod</em>), others, once in decline, have rebounded (e.g., striped bass <em>Morone saxatilis</em>), and populations of some species seem stable (e.g., spottail shiner <em>Notropis hudsonius</em>). No native species is extirpated from the system, and only one, shortnose sturgeon <em>Acipenser brevirostrum</em>, is listed as endangered. The recent establishment of the exotic zebra mussel <em>Dreissena polymorpha </em>may be shifting the fish assemblage away from openwater fishes (e.g., <em>Alosa</em>) and toward species associated with vegetation (e.g., centrarchids). In general, the Hudson River has seen an increase in the number and importance of alien species and a change in dominant species.


<em>Abstract.</em>—From its headwaters in the Rocky Mountains, the Platte River drains 230,362 km<sup>2</sup> in Colorado, Wyoming, and Nebraska. The Platte River is formed by the confluence of the North Platte and South Platte near the city of North Platte, Nebraska, and receives additional flow from the Loup and Elkhorn rivers that drain the Sand Hills region of Nebraska. Water diversions for mining and irrigation began in the 1840s in Colorado and Wyoming, and irrigation diversions in Nebraska began in the 1850s. Construction of dams for control of river flows commenced on the North Platte River in Wyoming in 1904. Additional dams and diversions in the North Platte, South Platte, and Platte rivers have extensively modified natural flow patterns and caused interruptions of flows. Pollution, from mining, industrial, municipal, and agricultural sources, and introductions of 24 nonnative species have also taken their toll. Fishes of the basin were little studied before changes in land use, pollution, and introduction of exotic species began. The current fish fauna totals approximately 100 species from 20 families. Native species richness declines westward, but some species find refugia in western headwaters streams. Declines in 26 native species has led to their being listing as species of concern by one or more basin states.


2015 ◽  
Vol 34 (8) ◽  
pp. 1793-1798 ◽  
Author(s):  
Xiaowei Jin ◽  
Zijian Wang ◽  
Yeyao Wang ◽  
Yibing Lv ◽  
Kaifeng Rao ◽  
...  

<em>Abstract.</em>—The Gila River originates in southwestern New Mexico and courses its way for over 700 km to the west before emptying into the main-stem Colorado River near Yuma, Arizona. Historically, this river was a major watercourse across the Sonora Desert of Arizona. At present, main-stem dams and numerous diversions have markedly altered the historic hydrology of the river. Seventeen native species once occupied the main stem of this large southwest desert river. More than twice that number (40) of nonnative fish species have been introduced into the waters of the Gila over the past century. Currently, less than half of the native fauna is present in the main stem and then primarily in the upper three reaches of the river. The majority of the species (70%) are federally listed as threatened, endangered, or sensitive. The combination of hydrological alteration and accompanying introductions of nonnative, principally sport fishes has basically extirpated the native fauna in all but the uppermost reaches of the Gila River main stem.


<em>Abstract.</em>—This book’s objective is to document historical changes in the fish assemblages of large American rivers, and to determine patterns in and rationale for those changes. In this chapter, we review pertinent literature on large rivers and fish assemblages worldwide and briefly introduce the chapters. We expect that the information contained in this book will aid river management in general, and stimulate similar historical fish assemblage studies elsewhere. There will never be a better time to learn and understand what has been changed and to reverse or slow undesirable changes.


Ecosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. e02351 ◽  
Author(s):  
Kristen L. Bouska

2018 ◽  
Vol 88 ◽  
pp. 322-331 ◽  
Author(s):  
Jerrod Parker ◽  
Yong Cao ◽  
Greg G. Sass ◽  
John Epifanio

Sign in / Sign up

Export Citation Format

Share Document