scholarly journals A New Formulation for Load Flow Solution of Power Systems With Series FACTS Devices

Author(s):  
P. sravan Kumar ◽  
A. Appa Rao ◽  
Dr. K. Sarat Kumar

This paper addresses the solution of load flow equa-tions for a power system with series flexible ac -transmission systems(FACTS) devices. A novel formulation of equations using dual state variables (current magnitude and angle) and dual controlvariables (series injected real power and series voltage in quadra-ture with current) for series devices is proposed. These specifica-tions can be related to transmission line loading and device limits.Specifications like power flow through a series device can also be handled using this formulation. The load flow equations are solved using Newton-Raphson technique. A decoupled formulation is also proposed. Case studies are carried out on IEEE test systems withseveral types of specifications to validate the method.


Flexible AC transmission systems (FACTS) devices are integrated into power system networks to control power flow, increase transmission line capability to its thermal limit, and improve the security of transmission systems. Power flow is an important mathematical calculation for planning, operation, and control of power systems network. The focus of the chapter is to explore how to modify Newton-Raphson power flow method to include various FACTS devices such as static VAR compensator (SVC), static synchronous compensator (STATCOM), static synchronous series compensator (SSSC), thyristor-controlled series capacitor (TCSC), thyristor-controlled phase shifter (TCPS), unified power flow controller (UPFC) controllers. This chapter briefly describes the power flow equations of the aforesaid FACTS-based power system network, and how the conventional power flow calculation is systematically extended to include these controllers is also been discussed.



Author(s):  
Maamar Benyamina ◽  
Mohamed Bouhamida ◽  
Tayeb Allaoui ◽  
Rachid Taleb ◽  
Mouloud Denai

<p>FACTS (Flexible AC Transmission Systems) technology has now been accepted as a potential solution to the stability problem and load flow. The Unified Power Flow Controller (UPFC) is considered to be the most powerful and versatile among all FACTS devices.  This paper presents the control of a UPFC system using Hinf robust control technique. A simulation study using Matlab/Simulink is presented to the performance of this control strategy and the robustness with respect to variations of the system parameters such as the inductance of the transmission line.</p>



2011 ◽  
Vol 403-408 ◽  
pp. 4926-4933
Author(s):  
Laxmidhar Sahu ◽  
Jose. P. Therattil ◽  
P. C. Panda

The continuous change in power demand and supply altered the power flow patterns in transmission networks in such a way that some of the corridors are lightly loaded and some of the corridors get over loaded. This raises serious challenge in operating the power system in secure and reliable manner. To cope with this problem Flexible AC Transmission Systems (FACTS) is used. It plays a very important role in improving the power system operating performance. In this paper load flow models for STATCOM and SVC have been developed. Power flow study of a five bus system is carried out with and without FACTS controllers. Results of the power flow studies are obtained with MATLAB programming.



2003 ◽  
Vol 18 (4) ◽  
pp. 1307-1315 ◽  
Author(s):  
U.P. Mhaskar ◽  
A.B. Mote ◽  
A.M. Kulkarni


Author(s):  
V. VIJAY VENU ◽  
A. K. VERMA

In this paper, beginning with a concise overview of the Available Transfer Capability (ATC) evaluation methods, we make a proposition for reliability management in the planning horizon of deregulated power systems through the concept of Adequacy Resiliency. The derived indices are meant as indicators of adaptability of power systems to ensure the required reliability levels. Improvements to this conceptualization upon the deployment of Flexible AC Transmission System (FACTS) devices are then put forward. We also explore the option of employing the created indices to the operational horizon of power systems, explaining the means of market enhancement. Core reliability issues arising out of the usage of FACTS are then discussed.



2019 ◽  
Vol 8 (4) ◽  
pp. 11456-11459

Generally, power system faces the problem to transfer power from one system to another system without any fluctuations, with minimal of system losses. To overcome this problems, a flexible ac transmission system is implemented in this paper. In present scenario, facts devices are used to reduce the transmission losses for improvising transmission capacity and also to improve the system capability. Unified Power Flow Controller plays a most prominent role in FACTS controller to improve the system stability. The structure of UPFC is combination of back-back converters with boosting and zigzag transformer. This type of UPFC system consists of high losses due to presence of magnetic properties in this transformer. With this, a transformer-less multilevel inverter based UPFC topology is proposed in this paper. This paper focuses on the modulation of transformerless UPFC with PSO, which controlsfundamental frequency for better controlling of active and reactive power, harmonic minimization, and improvement in efficiency of system by controlling DC link voltage



Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3292 ◽  
Author(s):  
Andres Tarraso ◽  
Ngoc-Bao Lai ◽  
Gregory N. Baltas ◽  
Pedro Rodriguez

The variable and unpredictable behavior of renewable energies impacts the performance of power systems negatively, threatening their stability and hindering their efficient operation. Flexible ac transmission systems (FACTS) devices are able to emulate the connection of parallel and series impedances in the transmission system, which improves the regulation of power systems with a high share of renewables, avoiding congestions, enhancing their response in front of contingencies and, in summary, increasing their utilization and reliability. Proper control of voltage and current under distorted and unbalanced transient grid conditions is one of the most critical issues in the control of FACTS devices to emulate such apparent impedances. This paper describes how the synchronous power controller (SPC) can be used to implement virtually synchronous FACTS. It presents the SPC functionalities, emphasizing in particular the importance of virtual admittance emulation by FACTS devices in order to control transient unbalanced currents during faults and attenuate harmonics. Finally, the results demonstrate the effectiveness of SPC-based FACTS devices in improving power quality of electrical networks. This is a result of their contribution to voltage balancing at point of connection during asymmetrical faults and the improvement of grid voltage quality by controlling harmonics flow.



Author(s):  
D Narasimha Rao ◽  
T Surnedra ◽  
S Tara Kalyani

<p>Modern power systems demand the need of active power flow with the help of Power Electronics control devices is needed. In the family of Flexible AC Transmission devices (FACTS), Dynamic PFC (DPFC) offers the same controlling function as Unified PFC (UPFC), comprising the control of transmission angle, bus voltage and line impedance. A technical modification of UPFC is DPFC in which fluctuations of voltage at DC link is eliminated that enables the individual operation as series and parallel controllers. The concept of DFACTS is used in design of the series converter. The replacement of  the  high  rating  three  phase  series  converter with  the multiple low rating single phase converters results in cost reduction and increases reliability greatly. This DC Link is used to transfer the real power between two converters in UPFC such as in DPFC which eliminates the 3rd harmonic frequencies at transmission lines. D-FACTS converters are acting as insulation between high voltage phases acts as 1-ᴓ floating with respect to ground. These results in lower cost for the DPFC system compared to the UPFC. This paper describes the comparison of PI and Sliding Mode Controllers which conclude that SMC is a better control strategy compared to PI.</p>



Sign in / Sign up

Export Citation Format

Share Document