Improved Performance of DPFC Using Sliding Mode Controller Method

Author(s):  
D Narasimha Rao ◽  
T Surnedra ◽  
S Tara Kalyani

<p>Modern power systems demand the need of active power flow with the help of Power Electronics control devices is needed. In the family of Flexible AC Transmission devices (FACTS), Dynamic PFC (DPFC) offers the same controlling function as Unified PFC (UPFC), comprising the control of transmission angle, bus voltage and line impedance. A technical modification of UPFC is DPFC in which fluctuations of voltage at DC link is eliminated that enables the individual operation as series and parallel controllers. The concept of DFACTS is used in design of the series converter. The replacement of  the  high  rating  three  phase  series  converter with  the multiple low rating single phase converters results in cost reduction and increases reliability greatly. This DC Link is used to transfer the real power between two converters in UPFC such as in DPFC which eliminates the 3rd harmonic frequencies at transmission lines. D-FACTS converters are acting as insulation between high voltage phases acts as 1-ᴓ floating with respect to ground. These results in lower cost for the DPFC system compared to the UPFC. This paper describes the comparison of PI and Sliding Mode Controllers which conclude that SMC is a better control strategy compared to PI.</p>


Author(s):  
D Narasimha Rao ◽  
T Surnedra ◽  
S Tara Kalyani

<p>Modern power systems demand the need of active power flow with the help of Power Electronics control devices is needed. In the family of Flexible AC Transmission devices (FACTS), Dynamic PFC (DPFC) offers the same controlling function as Unified PFC (UPFC), comprising the control of transmission angle, bus voltage and line impedance. A technical modification of UPFC is DPFC in which fluctuations of voltage at DC link is eliminated that enables the individual operation as series and parallel controllers. The concept of DFACTS is used in design of the series converter. The replacement of  the  high  rating  three  phase  series  converter with  the multiple low rating single phase converters results in cost reduction and increases reliability greatly. This DC Link is used to transfer the real power between two converters in UPFC such as in DPFC which eliminates the 3rd harmonic frequencies at transmission lines. D-FACTS converters are acting as insulation between high voltage phases acts as 1-ᴓ floating with respect to ground. These results in lower cost for the DPFC system compared to the UPFC. This paper describes the comparison of PI and Sliding Mode Controllers which conclude that SMC is a better control strategy compared to PI.</p>



Author(s):  
Ben Slimane Abdelkader ◽  
Chelleli Benachiba

Interline Power Flow Controller (IPFC) is one of the latest generation Flexible AC Transmission system (FACTS). It is able to control simultaneously the power flow of multiple transmission lines. This paper presents a study of the impact the IPFC on profile of voltage, real and reactive power flow in transmission line in power system. The obtained results are interesting.



Author(s):  
Anwar S. Siddiqui ◽  
Tanmoy Deb

With severe overload on transmission lines, further exchange of power flow is affected due to congestion on power transmission lines. This paper investigates the effect of Flexible AC Transmission System (FACTS) devices like TCSC and UPFC in congestion mitigation. The proposal uses multiple FACTS devices of similar type and investigates their effect on congestion mitigation in high voltage transmission lines. This proposal is tested on IEEE-14 bus system.



Author(s):  
P. sravan Kumar ◽  
A. Appa Rao ◽  
Dr. K. Sarat Kumar

This paper addresses the solution of load flow equa-tions for a power system with series flexible ac -transmission systems(FACTS) devices. A novel formulation of equations using dual state variables (current magnitude and angle) and dual controlvariables (series injected real power and series voltage in quadra-ture with current) for series devices is proposed. These specifica-tions can be related to transmission line loading and device limits.Specifications like power flow through a series device can also be handled using this formulation. The load flow equations are solved using Newton-Raphson technique. A decoupled formulation is also proposed. Case studies are carried out on IEEE test systems withseveral types of specifications to validate the method.



Author(s):  
Ghassan Abdullah Salman ◽  
Mohammed Hasan Ali ◽  
Ali Najim Abdullah

Electric power systems required efficient processors and intelligent methods for sustainability therefore, in this paper used Flexible AC Transmission System (FACTS) device specifically Unified Power Flow Controller (UPFC) because of its useful properties on series and shunt devices and used Genetic Algorithm (GA) to determine the optimal location and values of UPFC to achieve the following objectives: improve voltages profile, reduce power losses, treatment of power flow in overloaded transmission lines and reduce power generation. Consequently, all of these goals led to a reduction in the total cost of the power system. GA was applied to an Iraqi local power grid system (Diyala 132 kV) to find the optimal values and locations of UPFC for the purpose of achieving the objectives mentioned above using the MATLAB program. The simulation results showed the effectiveness of GA to calculate the optimum values and locations of UPFC and promising results were obtained for the Diyala power network (132 kV) with regard to the desired objectives.



Author(s):  
Sridhar Babu Gurijala ◽  
K S Srikanth ◽  
Ramchandra Nittala ◽  
G. Rohit Reddy

<p class="JESAbstract">In recent years, there is an immensely huge demand to power due to industrialization and modernization, butcorrespondingly the amplification of generation and transmission has not been done due to constrained resources and environmental limitations. The huge growth in demand leads to various problems in power systems. Heavy growth in semiconductor technology made power electronics plays a key role in solving these problems. Flexible AC transmission system (FACTS) devices are used for fixing various problems in power system. They are used for enhancing the existing transmission capabilities and improving the system dynamic performance so that to make transmission system flexible and efficient in operation. Inter line power flow controller (IPFC) is a latest generation series connected FACTS device, having capability of controlling power flow among multi line in a transmission network. In this paper cascaded 5 level inverter is used as the inverter module for IPFC. Control techniques play a vital role in power flow control in the system, with the main objective of minimization of harmonics and obtaining a variable output with maximum fundamental component. This paper discusses various comparative case studies on IPFC with cascaded 5 level inverter using SPWM and SVM control techniques.</p>



Author(s):  
Mohammed Yahya Suliman

<p>The power flow controlled in the electric power network is one of the main factors that affected the modern power systems development. The Static Series Compensatior with storage energy, is a FACTS powerful device that can control the active power flow control of multiple transmission lines branches. In this paper, a simulation model of power control using static series compensator with parallel transmission lines is presented.  The control system using adaptive neuro-fuzzy logic is proposed. The results show the ability of static series compensator with storage energy to control the flow of powers components "active and reactive power" in the controlled line and thus the overall power regulated between lines. </p>



Author(s):  
Ankit Kumar Singh

it's proposed to use highly complex grid controllers to include power grids into one super- grid that may acquire large penetration of inexhaustible powers, without compromising power quality, active and reactive power flow, and voltage and facility stability. The super-grid constructed with ultra- high voltage DC (UHVDC) and flexible ac transmission systems (FACTS) together with dedicated ac and dc interconnectors with intelligent systems applications to supply a wise Integrated Super-Grid. DC interconnectors will segment the whole continent's power systems into five large asynchronous segments (regions). Noncontemporary divisions will prevent ac fault propagation between sections while allowing power exchange between different parts of the super-grid, with minimum difficulty for grid code unification or harmonization of regulatory regimes across the mainland as each segment maintains its accord . a sensible Integrated wattage Super-Grid powered by these technologies is critical in supporting sustained economic process and development; established on the keystone of renewable energy and utilizing over 600GW immeasurable potential of Africa's clean and renewable hydroelectric, photovoltaic and alternative energy as a little of a extensive energy comingle of traditional and complementary energy resources.



The reactive power compensation in power system is done by using different Flexible AC Transmission Controllers (FACTS). Unified Power Flow Controller (UPFC) is simulated and analyzed to observe its overall functions when integrated into a transmission line. It is installed in electric transmission lines hence assisting in the controlling and manipulating of the power flowing in the lines to give out reliable, controlled and efficient electricity to an ordinary consumer. The modelling of this device UPFC was done based on the theory of line models which are short, medium and a long line models. Conclusion on which model to use was based on two factors. The first one is model voltage level and length of the transmission line. The simulation of the designed circuit models was carried out using MATLAB and the results were then analyzed.



Sign in / Sign up

Export Citation Format

Share Document