Advanced Drilling Technology and Equipment in Aircraft Assembly

2021 ◽  
Author(s):  
Amare Leulseged ◽  
Sima A. Nepal ◽  
Dan Sui ◽  
Suranga C. H. Geekiyanage

In drilling operations, the downhole pressure (BHP) requires to be closely monitored and precisely managed to avoid potential drilling events harmful to personnel and environment. If the BHP is lower than the pore pressure, kick (amount of influx) from formation will enter the wellbore, which might result in (underground) blowout. If not properly managed, this could be more costly than surface blowouts [1]. Well control aims to stop and remove the influx and re-establish primary barriers. Managed Pressure Drilling (MPD) is an advanced drilling technology capable of precisely controlling annular pressure profile throughout the wellbore. In this study, a high fidelity transient flow model is used for simulating dynamic well control procedure in MPD to properly manage annular pressure during kick circulation after the kick is detected. In this work, an automated well control in MPD is simulated, where PID control algorithm is implemented by manipulating choke valve opening to dynamically regulate the BHP during kick circulation. The main aim is to investigate dynamic kick management with the use of different type of muds, water based mud (WBM) and oil based mud (OBM). For different mud systems, the well control performances for long extended reach wells are evaluated and compared. From simulations, it shows that the OBM is able to hide the influx to a large extent, than the WBM due to the much higher gas solubility of the OBM. In HPHT wells, the OBM is superior to the WBM with proper automatic surface pressure control in MPD operations. Using complicated dynamic flow model can provide more precisely surface pressure control for realtime dynamic kick management.


2012 ◽  
Author(s):  
Olof Hummes ◽  
Paul Richard Bond ◽  
Wayne Symons ◽  
Anthony Jones ◽  
Andrew Michael Serdy ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2184
Author(s):  
Hongyu Ye ◽  
Xuezhen Wu ◽  
Dayong Li

About 90% of the world’s natural gas hydrates (NGH) exist in deep-sea formations, a new energy source with great potential for exploitation. There is distance from the threshold of commercial exploitation based on the single well currently used. The complex structure well is an efficient and advanced drilling technology. The improvement of NGH productivity through various complex structure wells is unclear, and there is no more complete combing. Thus, in order to evaluate their gas production characteristics, we establish a mathematical model for exploitation of NGH, and then 13 sets of numerical models based on the geological parameters of the Nankai Trough in Japan are developed and designed, including a single vertical well, a single horizontal well, 1~4 branch vertical wells, 1~4 branch horizontal wells, and 2~4 branch cluster horizontal wells. The research results indicate that wells with complex structures represented by directional wells and multilateral wells can significantly increase the area of water and gas discharge, especially cluster wells, whose productivity can be increased by up to 2.2 times compared with single wells. Complex structural wells will play an irreplaceable role in the future industrialization of NGH.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


Author(s):  
R.F. Sagatov ◽  
◽  
A.Ya. Vakula ◽  
A.R. Ibragimov ◽  
L.B. Khuzina ◽  
...  

2020 ◽  
pp. 54-62
Author(s):  
A. B. Tulubaev ◽  
E. V. Panikarovskii

In the article, we analyze types of drilling mud, which are used to drilling intervals of permafrost rocks; the importance of wellbore stability is noted. Wedescribethemain technologies, which have been being applied in the north of Western Siberia; these technologies are aimed at minimizing the loss wellbore stability due to violation of the temperature conditions in the well. We also analyze hydrocarbon systems, taking into account foreign experience, which is based on prospecting and exploratory drilling of ice deposits in Greenland and Antarctica. The article draws your attention to using synthetic fluids, monoesters and chladones. The difficulties of the existing technology and the disadvantages of the hydrocarbon systems are highlighted. We propose to apply a new cryogenic drilling technology, which consists in the use of synthetic fluorine-containing agents as flushing fluid at low temperatures. The text gives valuable information on composition of the proposed flushing fluid and the prospects of using the technology to prevent complications. Much attention is given to issue of manufacturing the main chemical reagent with the reduction of the generalized production chain of its production from the starting material, it is fluorspar.


Sign in / Sign up

Export Citation Format

Share Document