Kick Management Study on Automated Well Control for Managed Pressure Drilling in Long Wells

Author(s):  
Amare Leulseged ◽  
Sima A. Nepal ◽  
Dan Sui ◽  
Suranga C. H. Geekiyanage

In drilling operations, the downhole pressure (BHP) requires to be closely monitored and precisely managed to avoid potential drilling events harmful to personnel and environment. If the BHP is lower than the pore pressure, kick (amount of influx) from formation will enter the wellbore, which might result in (underground) blowout. If not properly managed, this could be more costly than surface blowouts [1]. Well control aims to stop and remove the influx and re-establish primary barriers. Managed Pressure Drilling (MPD) is an advanced drilling technology capable of precisely controlling annular pressure profile throughout the wellbore. In this study, a high fidelity transient flow model is used for simulating dynamic well control procedure in MPD to properly manage annular pressure during kick circulation after the kick is detected. In this work, an automated well control in MPD is simulated, where PID control algorithm is implemented by manipulating choke valve opening to dynamically regulate the BHP during kick circulation. The main aim is to investigate dynamic kick management with the use of different type of muds, water based mud (WBM) and oil based mud (OBM). For different mud systems, the well control performances for long extended reach wells are evaluated and compared. From simulations, it shows that the OBM is able to hide the influx to a large extent, than the WBM due to the much higher gas solubility of the OBM. In HPHT wells, the OBM is superior to the WBM with proper automatic surface pressure control in MPD operations. Using complicated dynamic flow model can provide more precisely surface pressure control for realtime dynamic kick management.

2021 ◽  
Author(s):  
Bryan Wade Atchison ◽  
Chad Wuest

Abstract Digitalisation and automation can account for massive efficiencies in wells operations. Managed Pressure Drilling (MPD) and Automated Well Control are examples of "smart" technologies that can mitigate risks and costs associated with drilling wells. The Automated Well Control system was developed to monitor the well, identify an influx, take control of the rig equipment and shut in the well. MPD provides annular pressure control, real-time information of the well parameters and conditions downhole and very accurate and immediate influx detection. However, if a high intensity influx is taken that exceeds the pre-planned operational limits of the MPD package, then secondary well control is required. Therefore, a combination of Automated Well Control and MPD has been developed to deliver both pressure control and well control in a safe, efficient and less error-prone manner. On an MPD operation, the Automated Well Control system shuts-in the well as soon as it is required to do so. With Automated Well Control in MPD mode, the MPD system decides when to shut in and the Automated Well Control technology will immediately space out, stop the mud pumps and top-drive, and shut in the well using the pre-selected blowout preventer. This interface between the two systems mitigates drilling hazards using automation. The sensitivity of MPD, combined with Automated Well Control technology enables fast identification, decision making and reaction to well control events. Consequently, this fully integrated solution improves safety and operational efficiency. The MPD and Automated Well Control systems were integrated into a test rig and several tests were efficiently performed. The tool enabled immediate action in the event of influxes, providing a valuable solution for the industry. This paper briefly describes MPD and Automated Well Control and summarises the interface between the two technologies, detailing how the integrated system works on a rig. Moreover, rig trialling results and further developments are presented.


2011 ◽  
Vol 51 (1) ◽  
pp. 109 ◽  
Author(s):  
Steve Nas

Closing the wellbore at the top with a rotating control device (RCD) for some kinds of managed pressure drilling (MPD) operations raises a number of issues with regards to well control and kick detection. The wellbore is closed and the standard flow check of looking into the well is no longer possible. The use of a RCD provides drillers with an additional level of comfort because it is a pressure management device, but it doesn’t eliminate the need to have well control as a primary objective. In recent MPD operations, it has already been observed that well control procedures are relaxed as a result of managed pressure drilling. Is managed pressure drilling the same as primary well control, and how do we deal with kicks in managed pressure drilling operations? At what point in a well control process do we hand over from MPD to drillers’ well control, and who is responsible? This paper will present some of the issues that need to be considered when planning and conducting MPD operations. Early kick detection and annular pressure control are promoted as an essential part of MPD operations, but there can be confusion as to where the responsibility for well control lies. Does the responsibility remain with the drilling contractor and operator or with the provider of the MPD services. The paper provides some case studies where MPD and well control conflicted, causing a number of issues that in some cases led to the loss of wells.


2013 ◽  
Vol 706-708 ◽  
pp. 1063-1067
Author(s):  
Hai Feng Lin ◽  
Liu Qing Du ◽  
Li Ping Xiong

The Liquid Surface Pressure Control is the key factor for the guarantee of Low Pressure Die Casting Quality. Regarding to the disadvantages of conventional PID Control such as pressure fluctuation, poor repeatability of the pressure curve, and so on, we propose Liquid Surface Pressure Control System (LSPCS) based on Fuzzy Adaptive PID. Design method of Fuzzy PID Controller has been discussed, and the realization methods of the hardware and software in this system are developed. This proposed system has a good performance in practice.


2021 ◽  
Author(s):  
Mahendra R Kunju ◽  
Mauricio A Almeida

Abstract As the use of adaptive drilling process like Managed Pressure Drilling (MPD) facilitates drilling of otherwise non-drillable wells with faster corrective action, the drilling industry should review some of the misconceptions to produce more efficient well control methods. This paper discusses results from full-scale experiments recently conducted in an extensively instrumented test well at Louisiana State University (LSU) and demonstrate that common expectations regarding the potential for high/damaging internal riser pressures resulting from upward transport or aggregation of riser gas are unfounded, particularly when compressibility of riser and its contents are considered. This research also demonstrates the minimal fluid bleed volumes required to reduce pressure build-up consequences of free gas migration in a fully closed riser.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yoon Jeong Baek ◽  
Seung-Hyun Kim ◽  
Sayup Kim ◽  
Eui-Sang Yoo ◽  
Joo-Young Lee

PurposeThe purpose of the present study was to evaluate the effect of air mattress pressure on sleep quality.Design/methodology/approachTen young healthy males participated in all hard surface [AH], shoulder soft [SS] and shoulder and hip soft mattress [SHS] conditions. The surface pressure for SS and SHS were set at their preferred levels.FindingsThe results showed that sleep efficiencies were over 95% for all the three conditions; there were no significant differences in individual sleep variables among the three conditions, but overall sleep quality was better for SS than AH (p = 0.065); heart rates during sleep was greater for AH than the other two conditions (p < 0.1); and a stronger relationship between clothing and bed microclimate humidity were found for SS and SHS than that for AH.Research limitations/implicationsThese results indicated that the both pressure relief air mattresses that were set at their own preferred levels provided high quality sleep with no marked differences.Practical implicationsAir pressure relief mattresses can improve sleep quality of healthy individuals during sleep at night. The results can be used to understand appropriate pressure distribution on surface mattress according to body region, and also to develop algorithms to provide optimum sleep using mattresses with surface pressure control by body region.Originality/valueThe present study found that the shoulder and/or hip pressure relief air mattresses that were set at their own preferred levels provided high quality sleep with no marked differences.


2021 ◽  
Author(s):  
Cesar Orta ◽  
Mohanad Al Faqih ◽  
Bader Al Gharibi ◽  
Mohammed Al Shabibi ◽  
Ali El Khouly ◽  
...  

Abstract Drilling with a gas cap over the Natih formation in Oman often results in excessive flat time. Using the current dynamic fill equipment to deal with kick and loss scenarios leads to extensive nonproductive time on the rig. Managed pressure drilling (MPD) is a well-established drilling technology, and diverse variants exist to suit different requirements. All those variants use the rotating control device (RCD) as a common piece of equipment, but their procedures are different. The pressurized mud-cap drilling (PMCD) technique in the Natih formation replaces the need for traditional dynamic filling technology. The PMCD application enhances the drilling and completion processes by reducing flat time when total downhole losses are experienced. This paper elaborates on PMCD as a proven drilling technique in total loss scenarios when drilling with it for the first time in the Natih formation in Oman. It describes the PMCD process, the associated equipment, and the results of the inaugural application in the Qalah field.


2014 ◽  
Vol 5 (3) ◽  
pp. 457-471 ◽  
Author(s):  
M. Mastrocicco ◽  
N. Colombani ◽  
A. Gargini

A modelling study on a multi-layered confined/unconfined alluvial aquifer system was performed to quantify surface water/groundwater interactions. The calibrated groundwater flow model was used to forecast climate change impacts by implementing the results of a downscaled A1B model ensemble for the Po river valley. The modelled area is located in the north-western portion of the Ferrara Province (Northern Italy), along the eastern bank of the Po river. The modelling procedure started with a large scale steady state model followed by a transient flow model for the central portion of the domain, where a telescopic mesh refinement was applied. The calibration performance of both models was satisfactory, in both drought and flooding conditions. Subsequently, forecasted rainfall, evapotranspiration and Po river stage at 2050, were implemented in the calibrated large scale groundwater flow model and their uncertainties discussed. Three scenarios were run on the large scale model: the first simulating mean hydrological conditions and the other two simulating one standard deviation above and below the mean hydrological conditions. The forecasted variations in groundwater/Po river fluxes are relevant, with a general increase of groundwater levels due to local conditions, although there are large uncertainties in the predicted variables.


Sign in / Sign up

Export Citation Format

Share Document