scholarly journals Microgrid System Design Based on Model Based Systems Engineering: the Case Study in the Amazon Region

2021 ◽  
Author(s):  
Miguel Angel Orellana Postigo ◽  
José Reinaldo Silva

Microgrid is a technically and economically viable opportunity to meet the demands of populations that, for various reasons, do not have access to electricity. The complexity of Smart Grid (SG) systems requires considerable engineering effort in the design process. Designing this type of complex system requires new approaches, methods, concepts and engineering tools. Where, requirements analysis plays a major role in better characterizing, understanding and specifying the domain of application that SG systems should solve. This work presents a systemic proposal based specifically on System Systems (SoS) which anticipates the formalization of requirements, aiming to understand, analyze and design SG within the scope of Model Based Systems Engineering (MBSE). The definition of a microgrid from the SoS perspective is presented in order to provide a complete view of its life cycle. Requirements would be represented in an Objective Oriented  Requirements Engineering (GORE) approach, specifically using visual diagrams based on the Keep All  Objectives Satisfied (KAOS) method, where network operation and control will be formally represented. A case  study for small communities in the equatorial Amazon forest is used as a case study for the proposed method.

2020 ◽  
Author(s):  
Miguel Angel Orellana Postigo ◽  
Javier Martinez ◽  
José Reinaldo Silva

Microgrids appear as a practical, clean and reliable solution to meet the demand of populations that, for various reasons, do not have access to electricity. The complexity of microgrid systems, requires considerable engineering eort in the design process. To design this type of complex systems, new approaches, methods, concepts and engineering tools are needed. Where, the requirements analysis has a preponderant role to better characterize, understand and specify the application domain and the problem that the microgrids must solve. This work proposes the introduction of a formal analysis of requirements in the life cycle of microgrid systems, using IEC 61850 as a reference architecture. The requirements would be represented in an Object Oriented Requirements Engineering (GORE) approach, using specically visual diagrams based on the KAOS (Keep All Objectives Satised) method, where the operation and control of the network will be formally represented. The requirements analysis is presented using a combined representation that uses the GORE and Petri Nets methodology for dynamic modeling and formal verication. A case study for small communities in the Amazon rainforest is used as a case study for the proposed method.


Systems ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 44 ◽  
Author(s):  
Beery ◽  
Paulo

This paper presents an approach to the utilization of model-based systems engineering (MBSE) early in the system lifecycle, which focuses on early identification of desirable system characteristics to support mission engineering (ME). The paper relies on the definition of an analysis approach and the associated mapping of architectural products. The analysis strategy focuses on integration of the results of operational simulations and system synthesis models through tradespace visualization. The architectural mapping presents the association of Systems Modeling Language (SysML) products to the analysis strategy. The coordination of these elements is presented as a demonstration of the role that MBSE concepts can play in support of ME. The approach is demonstrated through a case study analysis of a conceptual mine warfare system conducting mine countermeasure operations.


2020 ◽  
Vol 1 ◽  
pp. 2455-2464
Author(s):  
O. Bleisinger ◽  
S. Forte ◽  
C. Apostolov ◽  
M. Schmitt

AbstractDeveloping autonomous functions for complex systems leads to high demands on the consideration of dependencies to external actors in the usage phase. In Model-Based Systems Engineering (MBSE), this can be achieved by modelling operational aspects. Operational aspects are model elements and their relationships to each other. In this contribution, modelling of operational aspects with a MBSE-approach will be demonstrated exemplary on a case study related to the development of a yacht with an autonomous docking assistant. Currently modelling operational aspects is not common in the civil sector.


2021 ◽  
Author(s):  
Haluk Altay ◽  
M. Furkan Solmazgül

Systems engineering is the most important branch of engineering in interdisciplinary study. Successfully performing a multidisciplinary complex system is one of the most challenging tasks of systems engineering. Multidisciplinary study brings problems such as defining complex systems, ensuring communication between stakeholders, and common language among different design teams. In solving such problems, traditional systems engineering approach cannot provide an efficient solution. In this paper, a model-based systems engineering approach is applied with a case study and the approach is found to be more efficient. In the case study, the design of the helicopter automatic flight control system was realized by applying model-based design processes with integration of tools. Requirement management, system architecture management and model-based systems engineering processes are explained and applied of the case study. Finally, model-based systems engineering approach is proven to be effective compared with the traditional systems engineering methods for complex systems in aviation and defence industries.


2016 ◽  
Vol 11 (2) ◽  
pp. 184-199
Author(s):  
Patrick Chisan Hew

Current usages of model-based systems engineering allow naïve substitutions of humans by machines. Human factors / ergonomics researchers have rejected such substitutions as the “substitution myth,” for if work is reallocated from a human to a machine, then there is work incurred to ensure that the machine is working properly—it must be supervised. We construct a template for what automation should look like when the need for supervision is taken into account. The template can be applied to understand the arrangements for supervising automation in systems as they are and to explore the options for systems that are being designed. We consider examples from electronic warfare self-protection and the command and control of sensor-weapon systems in the land domain.


Sign in / Sign up

Export Citation Format

Share Document