scholarly journals Biomolecular Quantum Computation

2020 ◽  
Vol 2020 (10) ◽  
pp. 1007
Author(s):  
Terry Bollinger

In terms of leveraging the total power of quantum computing, the prevalent current (2020) model of designing quantum computation devices to follow the von Neuman model of abstraction is highly unlikely to be making full use of the full range of computational assistance possible at the atomic and molecular level. This is particularly the case for molecular modeling, in using computational models that more directly leverage the quantum effects of one set of molecules to estimate the behavior of some other set of molecules would remove the bottleneck of insisting that modeling first be converted to the virtual binary or digital format of quantum von Neuman machines. It is argued that even though this possibility of “fighting molecular quantum dynamics with molecular quantum dynamics” was recognized by early quantum computing founders such as Yuri Manin and Richard Feynman, the idea was quickly overlooked in favor of the more computer-compatible model that later developed into qubits and qubit processing.

2014 ◽  
Vol 14 (11&12) ◽  
pp. 901-916
Author(s):  
Daniel J. Brod ◽  
Andrew M. Childs

Matchgates are a restricted set of two-qubit gates known to be classically simulable when acting on nearest-neighbor qubits on a path, but universal for quantum computation when the qubits are arranged on certain other graphs. Here we characterize the power of matchgates acting on arbitrary graphs. Specifically, we show that they are universal on any connected graph other than a path or a cycle, and that they are classically simulable on a cycle. We also prove the same dichotomy for the XY interaction, a proper subset of matchgates related to some implementations of quantum computing.


2005 ◽  
Vol 5 (2) ◽  
pp. 102-112
Author(s):  
C.M. Dawson ◽  
H.L. Haselgrove ◽  
A.P. Hines ◽  
D. Mortimer ◽  
M.A. Nielsen ◽  
...  

What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z_2. This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP/P/\#P and BQP/PP.


Author(s):  
Joseph Brenner

The conjunction of the disciplines of computing and philosophy implies that discussion of computational models and approaches should include explicit statements of their underlying worldview, given the fact that reality includes both computational and non-computational domains. As outlined at ECAP08, both domains of reality can be characterized by the different logics applicable to them. A new “Logic in Reality” (LIR) was proposed as best describing the dynamics of real, non-computable processes. The LIR process view of the real macroscopic world is compared here with recent computational and information-theoretic models. Proposals that the universe can be described as a mathematical structure equivalent to a computer or by simple cellular automata are deflated. A new interpretation of quantum superposition as supporting a concept of paraconsistent parallelism in quantum computing and an appropriate ontological commitment for computational modeling are discussed.


Author(s):  
Renata Wong ◽  
Amandeep Singh Bhatia

In the last two decades, the interest in quantum computation has increased significantly among research communities. Quantum computing is the field that investigates the computational power and other properties of computers on the basis of the underlying quantum-mechanical principles. The main purpose is to find quantum algorithms that are significantly faster than any existing classical algorithms solving the same problem. While the quantum computers currently freely available to wider public count no more than two dozens of qubits, and most recently developed quantum devices offer some 50-60 qubits, quantum computer hardware is expected to grow in terms of qubit counts, fault tolerance, and resistance to decoherence. The main objective of this chapter is to present an introduction to the core quantum computing algorithms developed thus far for the field of cryptography.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 996
Author(s):  
Qingshan Xu ◽  
Xiaoqing Tan ◽  
Rui Huang

Recent advances in theoretical and experimental quantum computing raise the problem of verifying the outcome of these quantum computations. The recent verification protocols using blind quantum computing are fruitful for addressing this problem. Unfortunately, all known schemes have relatively high overhead. Here we present a novel construction for the resource state of verifiable blind quantum computation. This approach achieves a better verifiability of 0.866 in the case of classical output. In addition, the number of required qubits is 2N+4cN, where N and c are the number of vertices and the maximal degree in the original computation graph, respectively. In other words, our overhead is less linear in the size of the computational scale. Finally, we utilize the method of repetition and fault-tolerant code to optimise the verifiability.


Author(s):  
Dan Shepherd ◽  
Michael J. Bremner

We examine theoretic architectures and an abstract model for a restricted class of quantum computation, called here temporally unstructured (‘ instantaneous ’) quantum computation because it allows for essentially no temporal structure within the quantum dynamics. Using the theory of binary matroids, we argue that the paradigm is rich enough to enable sampling from probability distributions that cannot, classically, be sampled efficiently and accurately. This paradigm also admits simple interactive proof games that may convince a sceptic of the existence of truly quantum effects. Furthermore, these effects can be created using significantly fewer qubits than are required for running Shor's algorithm.


Author(s):  
R. Vilela Mendes

The two essential ideas in this paper are, on the one hand, that a considerable amount of the power of quantum computation may be obtained by adding to a classical computer a few specialized quantum modules and on the other hand, that such modules may be constructed out of classical systems obeying quantum-like equations where a space coordinate is the evolution parameter (thus playing the role of time in the quantum algorithms).


Author(s):  
Pauline J. Ollitrault ◽  
Alexander Miessen ◽  
Ivano Tavernelli

2021 ◽  
Author(s):  
Sahar Shoja

Quantum computation has the potential to transform the way various Canadian industries do business. Unlike classical computers which use bits, computers built using principles of quantum mechanics use qubits, which allows them to perform several complex tasks simultaneously and at a exponentially faster speed. This research will analyze the potential impact of quantum computing on Canada's cybersecurity and workforce. It will also highlight barriers to entry for this burgeoning technology and provide recommendations that address current and future challenges. It is proposed that if Canada embraces this technology's opportunities and addresses its challenges, it can continue to be a global leader in the eld of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document