Quantum computation of perfect time-eavesdropping in position-based quantum cryptography: Quantum computing and eavesdropping over perfect key distribution

Author(s):  
Sayantan Gupta ◽  
Kartik Sau ◽  
Jyotirmoy Pramanick ◽  
Swarnava Pyne ◽  
Rizwan Ahamed ◽  
...  
Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn

This article presents state-of-the-art and future perspectives of quantum computing and communication. Timeline of relevant findings in quantum informatics, such as quantum algorithms, quantum cryptography protocols, and quantum computing models, is summarized. Mathematics of information representation with quantum states is presented. The quantum circuit and adiabatic models of quantum computation are outlined. The functionality, limitations, and security of the quantum key distribution (QKD) protocol is presented. Current implementations of quantum computers and principles of quantum programming are shortly described.


Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn

This chapter presents state-of-the-art and future perspectives of quantum computing and communication. Timeline of relevant findings in quantum informatics, such as quantum algorithms, quantum cryptography protocols, and quantum computing models, is summarized. Mathematics of information representation with quantum states is presented. The quantum circuit and adiabatic models of quantum computation are outlined. The functionality, limitations, and security of the quantum key distribution (QKD) protocol is presented. Current implementations of quantum computers and principles of quantum programming are shortly described.


2016 ◽  
Vol 14 (02) ◽  
pp. 1630002
Author(s):  
Monika Jacak ◽  
Janusz Jacak ◽  
Piotr Jóźwiak ◽  
Ireneusz Jóźwiak

The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.


2020 ◽  
Author(s):  
Joachim Taiber ◽  

Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat to connected and automated vehicle technologies? What steps and measures are needed to make a V2X ecosystem “quantum-safe?” What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective?


2005 ◽  
Vol 5 (3) ◽  
pp. 181-186
Author(s):  
Th. Beth ◽  
J. Muller-Quade ◽  
R. Steinwandt

Recently, a quantum key exchange protocol has been described\cite{PFLM04}, which served as basis for securing an actual bank transaction by means of quantum cryptography \cite{ZVS04}. The authentication scheme used to this aim has been proposed by Peev et al. \cite{PML04}. Here we show, that this authentication is insecure in the sense that an attacker can provoke a situation where initiator and responder of a key exchange end up with different keys. Moreover, it may happen that an attacker can decrypt a part of the plaintext protected with the derived encryption key.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qin Li ◽  
Wai Hong Chan ◽  
Shengyu Zhang

2014 ◽  
Vol 14 (11&12) ◽  
pp. 901-916
Author(s):  
Daniel J. Brod ◽  
Andrew M. Childs

Matchgates are a restricted set of two-qubit gates known to be classically simulable when acting on nearest-neighbor qubits on a path, but universal for quantum computation when the qubits are arranged on certain other graphs. Here we characterize the power of matchgates acting on arbitrary graphs. Specifically, we show that they are universal on any connected graph other than a path or a cycle, and that they are classically simulable on a cycle. We also prove the same dichotomy for the XY interaction, a proper subset of matchgates related to some implementations of quantum computing.


2005 ◽  
Vol 5 (2) ◽  
pp. 102-112
Author(s):  
C.M. Dawson ◽  
H.L. Haselgrove ◽  
A.P. Hines ◽  
D. Mortimer ◽  
M.A. Nielsen ◽  
...  

What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z_2. This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP/P/\#P and BQP/PP.


Author(s):  
Renata Wong ◽  
Amandeep Singh Bhatia

In the last two decades, the interest in quantum computation has increased significantly among research communities. Quantum computing is the field that investigates the computational power and other properties of computers on the basis of the underlying quantum-mechanical principles. The main purpose is to find quantum algorithms that are significantly faster than any existing classical algorithms solving the same problem. While the quantum computers currently freely available to wider public count no more than two dozens of qubits, and most recently developed quantum devices offer some 50-60 qubits, quantum computer hardware is expected to grow in terms of qubit counts, fault tolerance, and resistance to decoherence. The main objective of this chapter is to present an introduction to the core quantum computing algorithms developed thus far for the field of cryptography.


Author(s):  
Bhanu Chander

Quantum cryptography is actions to protect transactions through executing the circumstance of quantum physics. Up-to-the-minute cryptography builds security over the primitive ability of fragmenting enormous numbers into relevant primes; however, it features inconvenience with ever-increasing machine computing power along with current mathematical evolution. Among all the disputes, key distribution is the most important trouble in classical cryptography. Quantum cryptography endows with clandestine communication by means of offering a definitive protection statement with the rule of the atmosphere. Exploit quantum mechanics to cryptography can be enlarging unrestricted, unfailing information transmission. This chapter describes the contemporary state of classical cryptography along with the fundamentals of quantum cryptography, quantum protocol key distribution, implementation criteria, quantum protocol suite, quantum resistant cryptography, and large-scale quantum key challenges.


Sign in / Sign up

Export Citation Format

Share Document