scholarly journals Compact Wideband Microstrip Patch Antenna based on High Impedance Surface

2018 ◽  
Vol 8 (4) ◽  
pp. 3149-3152
Author(s):  
S. Nelaturi ◽  
N. V. S. N. Sarma

A compact single probe feed asymmetrical semicircular fractal boundary patch antenna based on HIS (high impedance surface) is proposed for wide bandwidth at Wi-Fi band. Circular polarization operation can be obtained by embedding semi-circle fractal curves along the edges of the square patch antenna. The 10-dB return loss bandwidth is 15.13% (2.32GHz-2.70GHz). The 3-dB axial ratio bandwidth is 4.11% (2.38GHz-2.48GHz). The close relationship between simulation results and measured results establishes the antenna usefulness.

2018 ◽  
Vol 7 (3.29) ◽  
pp. 57
Author(s):  
Rangarao. Orugu ◽  
Srilatha. Gundapaneni ◽  
N Maryleena ◽  
A K.Chaithanya Varma

In this paper, we design a concentric circular patch antenna excited by microstrip feed and operates at 5.4269 GHz and 6.9419 GHz. After designing the antenna, we would like to tune the frequency without changing antenna size. For that purpose, we use high impedance surface structure to tune the antenna at two different frequencies. A simple mushroom like structure is used as high impedance surface. We will analyze antenna parameters like return loss, gain, directivity, radiation patterns, efficiency, proposed antenna with and without high impedance surfaces and compare the results.  


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kush Agarwal ◽  
Saugata Dutta

This paper proposes a compact microstrip patch antenna for operating in 2.4 GHz ISM and 3.5 GHz WiMAX bands with circularly polarized (CP) radiation. The CP radiation in dual-bands is a result of two multilayered truncated corner stacked square patches, while the reactive impedance surface (RIS) is used for antenna size miniaturization for the lower operating frequency band. Since the overall lateral antenna dimensions are controlled by the lower frequency band (higher wavelength), reducing the electrical size of the antenna for lower band results in overall smaller antenna dimensions. The measured 3-dB axial ratio bandwidths of the in-house fabricated antenna prototype are 6.1% (2.40–2.55 GHz) for the lower band and 5.7% (3.40–3.60 GHz) for the upper band, while the 10-dBS11bandwidths for the two bands are 8.1% (2.39–2.59 GHz) and 6.9% (3.38–3.62 GHz), respectively. The maximum gain at boresight for the lower band is 2.93 dBic at 2.5 GHz, while the gain for the upper band is 6.26 dBic at 3.52 GHz. The overall volume of the proposed antenna is 0.292λo × 0.292λo × 0.044λo, whereλois the corresponding free-space wavelength at 2.5 GHz.


Author(s):  
Dong Wang Dong Wang ◽  
Xing-Chang Wei Xing-Chang Wei ◽  
Jian-Bo Zhang Jian-Bo Zhang ◽  
Yu-Fei Shu Yu-Fei Shu ◽  
De-Cao Yang De-Cao Yang

Author(s):  
Sangkil Kim

In this paper, a backfire suppressed aperture coupled circularly polarized (CP) stacked patch antenna for universal ultra-high frequency (UHF) radio frequency identification applications is presented. Cross-polarized backfire radiation patterns were successfully suppressed by a planar high impedance surface (HIS) reflector. The size of the fabricated antenna is 250 × 250 × 26.9 mm3 (0.71λ0 × 0.71λ0 × 0.076λ0) and its peak gain value of 7.1 dBi is measured. The distance between the antenna and the HIS reflector is only 4.8 mm (0.014 λ0). The HIS reflector suppressed cross-pol backfire radiations by about 10 dB. Detailed antenna and HIS reflector design are discussed thoroughly in this paper. The presented backfire suppression technique using the HIS reflector is scalable to other applications and frequency bands. This paper demonstrates the feasibility of the HIS structure at UHF band.


2019 ◽  
Vol 12 (4) ◽  
pp. 303-308
Author(s):  
Kumar Goodwilll ◽  
Neha Singh ◽  
M.V. Kartikeyan

AbstractA novel planar dual-band bow-tie slotted patch antenna backed by high-impedance surface (HIS) is designed at 2.5 and 3.5 GHz for wireless application. The antenna employs coplanar waveguide fed patch and bow-tie slot as radiating elements. The bow-tie slot enables dual-band operation for the antenna. The HIS is made asymmetric in design to make it polarization dependent. This polarization-dependent HIS is eventually designed to reflect circularly polarized waves from linearly polarized incident waves.


Sign in / Sign up

Export Citation Format

Share Document