scholarly journals Multiple Input Multiple Output (MIMO) Model of an Industrial Ecosystem: An Agent-Based Modeling Approach

2020 ◽  
Vol 10 (4) ◽  
pp. 6092-6101
Author(s):  
G. O. Ajisegiri ◽  
F. L. Muller

This paper addresses the application of the Agent-Based Model (ABM) to simulate the evolution of Multiple Input Multiple Output (MIMO) eco-industrial parks to gain insight into their behavior. ABM technique has proven to be an effective tool that can be used to express the evolution of eco-industrial parks. The ABM represents autonomous entities, each with dynamic behavior. The agents within the eco-industrial park are factories, market buyers, and market sellers. The results showed that the Réseau agent-based model allowed the investigation of the behaviors exhibited by different agents in exchange for materials in the industrial park.

Author(s):  
B-S Chen ◽  
C-L Lin ◽  
F-B Hsiao

A new multiple-input multiple-output time domain stability criterion for large flexible structures is illustrated by application to observer-based control of a Bernoulli-Euler beam. Upper norm bounds of the state transition matrix of the residual dynamics and total spillover matrix (impulse response matrix of the residual model) are investigated. The approach can be easily extended to a practical consideration of the unavoidable saturation of the actuators and gives an insight into the stabilization analysis of saturating control of flexible structures.


Author(s):  
Mario Garcia-Sanz ◽  
Irene Eguinoa ◽  
Marta Barreras ◽  
Samir Bennani

This paper deals with the design of robust control strategies to govern the position and attitude of a Darwin-type spacecraft with large flexible appendages. The satellite is one of the flyers of a multiple spacecraft constellation for a future ESA mission. It presents a 6×6 high order multiple-input–multiple-output (MIMO) model with large uncertainty and loop interactions introduced by the flexible modes of the low-stiffness appendages. The scientific objectives of the satellite require very demanding control specifications for position and attitude accuracy, high disturbance rejection, loop-coupling attenuation, and low controller order. The paper demonstrates the feasibility of a sequential nondiagonal MIMO quantitative feedback theory (QFT) strategy controlling the Darwin spacecraft and compares the results with H-infinity and sequential diagonal MIMO QFT designs.


1996 ◽  
Vol 122 (3) ◽  
pp. 507-513 ◽  
Author(s):  
Douglas G. Walker ◽  
Jeffrey L. Stein ◽  
A. Galip Ulsoy

Model order deduction algorithms have been developed in an effort to automate the production of accurate, minimal complexity models of dynamic systems in order to aid in the design of these systems. Previous algorithms, MODA and Extended MODA, deduce models independent of system inputs and outputs. FD-MODA uses frequency response methods to deduce models of a single input-output pair. In this paper, an input-output criterion based on controllability and observability is combined with the frequency based criterion used by MODA. The new model deduction algorithm, IO-MODA, compares the ratio of the adjacent diagonal values of the system gramian to a user specified threshold. The gramian is computed from a balanced realization of the system. IO-MODA generates an accurate multiple-input multiple-output model of minimum order with physically meaningful states. This model is called a proper MIMO model. An example problem is used to demonstrate this new model deduction algorithm. [S0022-0434(00)02103-1]


Sign in / Sign up

Export Citation Format

Share Document