scholarly journals A Novel Fuzzy Logic Based Load Frequency Control for Multi-Area Interconnected Power Systems

2021 ◽  
Vol 11 (4) ◽  
pp. 7522-7529
Author(s):  
D. V. Doan ◽  
K. Nguyen ◽  
Q. V. Thai

This study focuses on designing an effective intelligent control method to stabilize the net frequency against load variations in multi-control-area interconnected power systems. Conventional controllers (e.g. Integral, PI, and PID) achieve only poor control performance with high overshoots and long settling times. They could be replaced with intelligent regulators that can update controller parameters for better control quality. The control strategy is based on fuzzy logic, which is one of the most effective intelligent strategies and can be a perfect substitute for such conventional controllers when dealing with network frequency stability problems. This paper proposes a kind of fuzzy logic controller based on the PID principle with a 49-rule set suitable to completely solve the problem of load frequency control in a two-area thermal power system. Such a novel PID-like fuzzy logic controller with modified scaling factors can be applied in various practical scenarios of an interconnected power system, namely varying load change conditions, changing system parameters in the range of ±50%, and considering Governor Dead-Band (GDB) along with Generation Rate Constraint (GRC) nonlinearities and time delay. Through the simulation results implemented in Matlab/Simulink software, this study demonstrates the effectiveness and feasibility of the proposed fuzzy logic controller over several counterparts in dealing with the load-frequency control of a practical interconnected power system considering the aforesaid conditions.

Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


2018 ◽  
Vol 17 (1) ◽  
pp. 107
Author(s):  
Gusti Made Ngurah Christy Aryanata ◽  
I Nengah Suweden ◽  
I Made Mataram

A good electrical power system is a system that can serve the load in a sustainable and stable voltage and frequency. Changes in frequency occur due to the demand of loads that change from time to time. The frequency setting of the PLTG power system depends on the active power charge in the system. This active power setting is done by adjusting the magnitude of the generator drive coupling. The frequency setting is done by increasing and decreasing the amount of primary energy (fuel) and carried on the governor. Simulation in governor analysis study as load frequency control at PLTG using fuzzy logic controller is done by giving four types of cultivation that is 0,1 pu, 0,2pu, 0,3 pu and 0,4 pu. The simulation is done to compare the dynamic frequency response output and the resulting stability time using fuzzy logic controller with PI controller. Based on the results of comparative analysis conducted to prove that governor as load frequency control using fuzzy logic control is better than using PI controller. This can be seen from the output response frequency and time stability.


2014 ◽  
Vol 63 (2) ◽  
pp. 161-175 ◽  
Author(s):  
S. Selvakumaran ◽  
V. Rajasekaran ◽  
R. Karthigaivel

Abstract A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.


Sign in / Sign up

Export Citation Format

Share Document