scholarly journals Remote Sensing Data Classification Technique: A Review

Author(s):  
Vaibhav A. Didore ◽  
Dhananjay B. Nalawade ◽  
Renuka B. Vaidya

Remote sensing is the prominent technology to study the ecology of the earth. Classification is a commonly used technique for quantitative analysis of remote sensing image data. It is based on the concept of segmentation of spectral regions into regions that can be associated with a soil cover class of interest for a particular application. As an advanced remote sensing tool, Hyperspectral remote sensing technology has been studied in many applications such as geology, topography, biology, soil science, hydrology, plants and ecosystems, atmospheric science. In this paper, Supervised Decision tree; Minimum distance; Maximum likelihood classification; Parallelepiped; K-nearest neighbor; and Unsupervised K-mean; & ISODATA algorithm are reviewed. This review is helpful to the researchers who are studying this emerging field i.e. HRS.

Author(s):  
Kuncoro Teguh Setiawan ◽  
Yennie Marini ◽  
Johannes Manalu ◽  
Syarif Budhiman

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.


2015 ◽  
Vol 713-715 ◽  
pp. 2077-2080 ◽  
Author(s):  
Wei Ya Guo ◽  
Xiao Fei Wang ◽  
Xue Zhi Xia

Aiming at detecting sea targets efficiently, an approach using optical remote sensing data based on co-training model is proposed. Firstly, using size, texture, shape, moment invariants features and ratio codes, feature extraction is realized. Secondly, based on rough set theory, the common discernibility degree is used to select valid recognition features automatically. Finally, a co-training model for classification is introduced. Firstly, two diverse ruducts are generated, and then the model employs them to train two base classifiers on labeled dada, and makes two base classifiers teach each other on unlabeled data to boot their performance iteratively. Experimental results show the proposed approach can get better performance than K-Nearest Neighbor (KNN), Support Vector Machines (SVM), traditional hierarchical discriminant regression (HDR).


2007 ◽  
Vol 44 (2) ◽  
pp. 149-165 ◽  
Author(s):  
Qingmin Meng ◽  
Chris J. Cieszewski ◽  
Marguerite Madden ◽  
Bruce E. Borders

Author(s):  
Gulnaz Alimjan ◽  
Tieli Sun ◽  
Hurxida Jumahun ◽  
Yu Guan ◽  
Wanting Zhou ◽  
...  

Analysis and classification for remote sensing landscape based on remote sensing imagery is a popular research topic. In this paper, we propose a new remote sensing data classifier by incorporating the support vector machine (SVM) learning information into the K-nearest neighbor (KNN) classifier. The SVM is well known for its extraordinary generalization capability even with limited learning samples, and it is very useful for remote sensing applications as data samples are usually limited. The KNN has been widely used in data classification due to its simplicity and effectiveness. However, the KNN is instance-based and needs to keep all the training samples for classification, which could cause not only high computation complexity but also overfitting problems. Meanwhile, the performance of the KNN classifier is sensitive to the neighborhood size [Formula: see text] and how to select the value of the parameter [Formula: see text] relies heavily on practice and experience. Based on the observations that the SVM can contribute to the KNN on the problems of smaller training samples size as well as the selection of the parameter [Formula: see text], we propose a support vector nearest neighbor (abbreviated as SV-NN) hybrid classification approach which can simplify the parameter selection while maintaining classification accuracy. The proposed approach is consist of two stages. In the first stage, the SVM is performed on the training samples to obtain the reduced support vectors (SVs) for each of the sample categories. In the second stage, a nearest neighbor classifier (NNC) is used to classify a testing sample, i.e. the average Euclidean distance between the testing data point to each set of SVs from different categories is calculated and the NNC identifies the category with minimum distance. To evaluate the effectiveness of the proposed approach, firstly experiments of classification for samples from remote sensing data are evaluated, and then experiments of identifying different land covers regions in the remote sensing images are evaluated. Experimental results show that the SV-NN approach maintains good classification accuracy while reduces the training samples compared with the conventional SVM and KNN classification model.


2012 ◽  
Vol 518-523 ◽  
pp. 5697-5703
Author(s):  
Zhao Yan Liu ◽  
Ling Ling Ma ◽  
Ling Li Tang ◽  
Yong Gang Qian

The aim of this study is to assess the capability of estimating Leaf Area Index (LAI) from high spatial resolution multi-angular Vis-NIR remote sensing data of WiDAS (Wide-Angle Infrared Dual-mode Line/Area Array Scanner) imaging system by inverting the coupled radiative transfer models PROSPECT-SAILH. Based on simulations from SAILH canopy reflectance model and PROSPECT leaf optical properties model, a Look-up Table (LUT) which describes the relationship between multi-angular canopy reflectance and LAI has been produced. Then the LAI can be retrieved from LUT by directly matching canopy reflectance of six view directions and four spectral bands with LAI. The inversion results are validated by field data, and by comparing the retrieval results of single-angular remote sensing data with multi-angular remote sensing data, we can found that the view angle takes the obvious impact on the LAI retrieval of single-angular data and that high accurate LAI can be obtained from the high resolution multi-angular remote sensing technology.


2020 ◽  
Vol 12 (2) ◽  
pp. 266 ◽  
Author(s):  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
Kayvan Ghaderi ◽  
Ebrahim Omidvar ◽  
Nadhir Al-Ansari ◽  
...  

Mapping flood-prone areas is a key activity in flood disaster management. In this paper, we propose a new flood susceptibility mapping technique. We employ new ensemble models based on bagging as a meta-classifier and K-Nearest Neighbor (KNN) coarse, cosine, cubic, and weighted base classifiers to spatially forecast flooding in the Haraz watershed in northern Iran. We identified flood-prone areas using data from Sentinel-1 sensor. We then selected 10 conditioning factors to spatially predict floods and assess their predictive power using the Relief Attribute Evaluation (RFAE) method. Model validation was performed using two statistical error indices and the area under the curve (AUC). Our results show that the Bagging–Cubic–KNN ensemble model outperformed other ensemble models. It decreased the overfitting and variance problems in the training dataset and enhanced the prediction accuracy of the Cubic–KNN model (AUC=0.660). We therefore recommend that the Bagging–Cubic–KNN model be more widely applied for the sustainable management of flood-prone areas.


2020 ◽  
Vol 12 (9) ◽  
pp. 1530
Author(s):  
Meng Jin ◽  
Yuqi Bai ◽  
Emmanuel Devys ◽  
Liping Di

Geolocation information is an important feature of remote sensing image data that is captured through a variety of passive or active observation sensors, such as push-broom electro-optical sensor, synthetic aperture radar (SAR), light detection and ranging (LIDAR) and sound navigation and ranging (SONAR). As a fundamental processing step to locate an image, geo-positioning is used to determine the ground coordinates of an object from image coordinates. A variety of sensor models have been created to describe geo-positioning process. In particular, Open Geospatial Consortium (OGC) has defined the Sensor Model Language (SensorML) specification in its Sensor Web Enablement (SWE) initiative to describe sensors including the geo-positioning process. It has been realized using syntax from the extensible markup language (XML). Besides, two standards defined by the International Organization for Standardization (ISO), ISO 19130-1 and ISO 19130-2, introduced a physical sensor model, a true replacement model, and a correspondence model for the geo-positioning process. However, a standardized encoding for geo-positioning sensor models is still missing for the remote sensing community. Thus, the interoperability of remote sensing data between application systems cannot be ensured. In this paper, a standardized encoding of remote sensing geo-positioning sensor models is introduced. It is semantically based on ISO 19130-1 and ISO 19130-2, and syntactically based on OGC SensorML. It defines a cross mapping of the sensor models defined in ISO 19130-1 and ISO 19130-2 to the SensorML, and then proposes a detailed encoding method to finalize the XML schema (an XML schema here is the structure to define an XML document), which will become a profile of OGC SensorML. It seamlessly unifies the sensor models defined in ISO 19130-1, ISO 19130-2, and OGC SensorML. By enabling a standardized description of sensor models used to produce remote sensing data, this standard is very promising in promoting data interoperability, mobility, and integration in the remote sensing domain.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 439 ◽  
Author(s):  
Helin Yin ◽  
Yeong Hyeon Gu ◽  
Chang-Jin Park ◽  
Jong-Han Park ◽  
Seong Joon Yoo

The use of conventional classification techniques to recognize diseases and pests can lead to an incorrect judgment on whether crops are diseased or not. Additionally, hot pepper diseases, such as “anthracnose” and “bacterial spot” can be erroneously judged, leading to incorrect disease recognition. To address these issues, multi-recognition methods, such as Google Cloud Vision, suggest multiple disease candidates and allow the user to make the final decision. Similarity-based image search techniques, along with multi-recognition, can also be used for this purpose. Content-based image retrieval techniques have been used in several conventional similarity-based image searches, using descriptors to extract features such as the image color and edge. In this study, we use eight pre-trained deep learning models (VGG16, VGG19, Resnet 50, etc.) to extract the deep features from images. We conducted experiments using 28,011 image data of 34 types of hot pepper diseases and pests. The search results for diseases and pests were similar to query images with deep features using the k-nearest neighbor method. In top-1 to top-5, when using the deep features based on the Resnet 50 model, we achieved recognition accuracies of approximately 88.38–93.88% for diseases and approximately 95.38–98.42% for pests. When using the deep features extracted from the VGG16 and VGG19 models, we recorded the second and third highest performances, respectively. In the top-10 results, when using the deep features extracted from the Resnet 50 model, we achieved accuracies of 85.6 and 93.62% for diseases and pests, respectively. As a result of performance comparison between the proposed method and the simple convolutional neural network (CNN) model, the proposed method recorded 8.62% higher accuracy in diseases and 14.86% higher in pests than the CNN classification model.


2014 ◽  
Vol 962-965 ◽  
pp. 127-131
Author(s):  
Xin Xing Liu

Remote sensing technology as a kind of new and advanced technology has been playing an important role in geological mapping and prospecting. A single kind of remote sensing data always has both advantages and disadvantages. And with multispectral remote sensing data types increasing, the integrated application of multi-source remote sensing data will be one of the development trend of remote sensing geology. In this paper, comprehensive utilization of multi-source remote sensing data such as ETM+, ASTER, Worldview-II and DEM, lithology and geological structure of Qiangduo area in Tibet were interpreted in different levels and mineralized alteration information also was extracted. Then on the basis of modern metallogenic theory, analyzed the multiple mineralization favorite information, established the remote sensing prediction model, and on the GIS platform, carried out metallogenic prediction of the study area. The field validation shows that the results of the prediction are relatively accurate and remote sensing technology can improve the efficiency of geological work.


Sign in / Sign up

Export Citation Format

Share Document