scholarly journals THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY

Author(s):  
Kuncoro Teguh Setiawan ◽  
Yennie Marini ◽  
Johannes Manalu ◽  
Syarif Budhiman

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.

Author(s):  
Phan Quoc Yen ◽  
Dao Khanh Hoai ◽  
Dinh Thi Bao Hoa

Satellite image data is being researched and applied effectively in the survey and establishment of bathymetry mapping in shallow water areas in both time and human terms. Remote sensing techniques contribute to rapid updating of topography, timely assurance of civil and military operations such as maritime safety, environmental security and rescue, Warfare in the military, especially the ability to remotely monitor disputed areas. The article experiment with the Stumpf et al algorithm to estimate the shallow water depths on the Spratly Island by Landsat 8 image. The correlation coefficient of the model R2 is 0.924; RMSE is 0.99m. In addition, the results are compared with the map data of C-map and use 12 actual test points scores to evaluate the accuracy of the model.


Author(s):  
Leonid Katkovsky

Atmospheric correction is a necessary step in the processing of remote sensing data acquired in the visible and NIR spectral bands.The paper describes the developed atmospheric correction technique for multispectral satellite data with a small number of relatively broad spectral bands (not hyperspectral). The technique is based on the proposed analytical formulae that expressed the spectrum of outgoing radiation at the top of a cloudless atmosphere with rather high accuracy. The technique uses a model of the atmosphere and its optical and physical parameters that are significant from the point of view of radiation transfer, the atmosphere is considered homogeneous within a satellite image. To solve the system of equations containing the measured radiance of the outgoing radiation in the bands of the satellite sensor, the number of which is less than the number of unknowns of the model, it is proposed to use various additional relations, including regression relations between the optical parameters of the atmosphere. For a particular image pixel selected in a special way, unknown atmospheric parameters are found, which are then used to calculate the reflectance for all other pixels.Testing the proposed technique on OLI sensor data of Landsat 8 satellite showed higher accuracy in comparison with the FLAASH and QUAC methods implemented in the well-known ENVI image processing software. The technique is fast and there is using no additional information about the atmosphere or land surface except images under correction.


2019 ◽  
Vol 136 ◽  
pp. 06032
Author(s):  
Kun Ding ◽  
Chen Yang ◽  
Chuan-hua Zhu ◽  
Yong Zhang ◽  
Hui Zhang ◽  
...  

Total phosphorus (TP) in water is an important indicator reflecting water environment and water ecology. If the concentration exceeds the standard, it will directly lead to eutrophication. The daily monitoring of total phosphorus in water bodies has already mentioned the important agenda of environmental protection, while the routine testing has a large workload and heavy tasks. We used satellite remote sensing technology to extract image data and establish a mathematical models, what was used to invert the total phosphorus concentration in water. Taking the Ring River as an example, we selected different time nodes to sample and measure the TP value, and use the landsat-8 image data to establish a semi-empirical regression model. The model structure, the calculation results found that the error with the measured data is within the controllable range. The method is simple in operation, saves resources, manpower and financial resources, and can accurately reflect the actual situation of the water body TP.


2019 ◽  
Vol 51 (1) ◽  
pp. 42
Author(s):  
Hendrata Wibisana ◽  
Bangun Muljo Soekotjo ◽  
Umboro Lasminto

Total suspended solid (TSS) is one of the parameters that uses for detecting health in aquatic environments. The distribution of the TSS value in the water body will affect the aquatic ecosystem. In this research will be analyzed the distribution value of TSS during 5 year period by utilizing Landsat 8 satellite image data, where the developed method is extraction of reflectance value from Landsat 8 satellite image for 5 years using SEADASS and then compiled the TSS algorithm with reflectance value that already obtained on the existing conditions, the algorithm obtained is estimated over 5 years back to get a picture of change and distribution of TSS value. As a case study , the coast of Ujung Pangkah Gresik was taken which has the mouth of the river Bengawan Solo. The results obtained from this study illustrate the decrease of TSS value during that time period, so that with this decrease can be concluded that at the point of field coordinate, TSS value was decreasing and causing the erosion in the environment.


Author(s):  
Thu Trang Hoang ◽  
Khoi Nguyen Dao ◽  
Loi Thi Pham ◽  
Hong Van Nguyen

The objective of this study was to analyze the changes of riverbanks in Ho Chi Minh City for the period 1989-2015 using remote sensing and GIS. Combination of Modified Normalized Difference Water Index (MNDWI) and thresholding method was used to extract the river bank based on the multi-temporal Landsat satellite images, including 12 Landsat 4-5 (TM) images and 2 Landsat 8 images in the period 1989-2015. Then, DSAS tool was used to calculate the change rates of river bank. The results showed that, the processes of erosion and accretion intertwined but most of the main riverbanks had erosion trend in the period 1989-2015. Specifically, the Long Tau River, Sai Gon River, Soai Rap River had erosion trends with a rate of about 10.44 m/year. The accretion process mainly occurred in Can Gio area, such as Dong Tranh river and Soai Rap river with a rate of 8.34 m/year. Evaluating the riverbank changes using multi-temporal remote sensing data may contribute an important reference to managing and protecting the riverbanks.


2018 ◽  
Vol 6 (4) ◽  
pp. 433-441
Author(s):  
Aulia Huda Riyanti ◽  
Agung Suryanto ◽  
Churun Ain

Garis pantai Desa Surodadi mengalami perubahan dari tahun ke tahun. Perubahan yang serius ini perlu untuk dilakukan pemantauan terus menerus. Penelitian ini dilakukan untuk memperoleh informasi tentang perubahan garis pantai dan kaitannya dengan tutupan lahan di pesisir Desa Surodadi Kecamatan Sayung Kabupaten Demak pada tahun 2015 dan 2016. Penelitian ini dilaksanakan pada bulan Mei sampai dengan Juni 2017. Stasiun penelitian dibagi menjadi lima stasiun berdasarkan lokasi abrasi dan akresi yang telah terjadi. Dengan proses overlay kedua data citra satelit melalui sistem informasi geografis merupakan cara cepat untuk mengetahui perubahan garis pantai yang terjadi pada pesisir Desa Surodadi. Metode penelitian ini dengan menggunakan metode deskriptif studi kasus dengan menggunakan teknologi penginderaan jauh pada pengolahan data citra SPOT 6 tahun 2015 dan tahun 2016 yang diperoleh dari Pusat Teknologi dan Data Penginderaan Jauh LAPAN Jakarta serta dilakukan survei lapangan sehingga diperoleh laju perubahan garis pantai serta tutupan lahan yang terdapat pada lokasi penelitian. Garis pantai yang terjadi dari tahun 2015 sampai tahun 2016 lebih banyak mengalami proses abrasi jika dibandingkan proses akresi. Berdasarkan hasil penelitian dapat diketahui laju perubahan panjang garis pantai sebesar 103,58 m, perubahan garis pantai yang terjadi berupa abrasi sebesar 1,197 ha dan perubahan yang berupa akresi sebesar 0,490 ha. Keterkaitan antara perubahan garis pantai dengan tutupan lahan di Desa Surodadi adalah tutupan mangrove yang ada cukup luas dan relatif rapat sehingga dapat mencegah intrusi air laut yang dapat menyebabkan perubahan garis pantai. Surodadi village coastline changes from year to year. This serious change is necessary for ongoing monitoring. This research was conducted to obtain information about coastline change and its relation to land cover in coastal village of Surodadi Sub-District of Sayung Regency of Demak in 2015 until 2016. This research was conducted from May to June 2017. The research station is divided into five stations based on the location of abrasion and Accretion that has occurred. With the second overlay process satellite image data through geographic information system is a quick way to find out the shoreline changes that occur in the coastal village of Surodadi. This research method is done by using descriptive method of case study by using remote sensing technology on SPOT image data processing of 6 year 2015 and year 2016 which obtained from Center of Technology and Remote Sensing Data of LAPAN Jakarta and conducted field survey so that obtained rate of change of coastline happened also Land cover located at the research location. Coastlines that occur from 2015 to 2016 more experienced abrasion process when compared to the accretion process. Based on the research results can be seen the rate of change of coastline length of 103.58 m, shoreline changes that occur in the form of abrasion of 1.197 ha and changes in the form of accretion of 0.490 ha. The link between coastline change and land cover in Surodadi Village is that the mangrove cover is wide enough and relatively close so it can prevent the intrusion of sea water which can cause coastline changes.


Author(s):  
Komang Gede Kurniadi ◽  
I Putu Agung Bayupati ◽  
I Dewa Nyoman Nurweda Putra

Calculation of Gross Primary Production that utilize remote sensing data is can be done on commercial remote sensing software by manual method. The commercial remote sensing software does not provides a specific feature that allow the user to do the Gross Primary Production calculation. This research is aimed to to build a remote sensing software that can be specifically used to do the Gross Primary Production calculation for Denpasar area. This software accepts remote sensing data as an input, such as satellite image from Landsat 8 OLI and TIRS and metadata file. The formulas and supporting data that required on the Gross Primary Production calculation are implemented on software in order to make an automatic image processing software. There also some additional feature on this software such as automatic data parsing from metadata file, cropping, masking and zoom that could help user to do the Gross Primary Production calculation. The developed software is able to produce information such as Gross Primary Production  value that depicted by a figure with color segmentation, area of the segments and mean, minimum and maximum value of the Gross Primary Production.  


Author(s):  
M. A. A. Ghaffar ◽  
T. T. Vu ◽  
T. H. Maul

The inconsistency between the freely available remote sensing datasets and crowd-sourced data from the resolution perspective forms a big challenge in the context of data fusion. In classical classification problems, crowd-sourced data are represented as points that may or not be located within the same pixel. This discrepancy can result in having mixed pixels that could be unjustly classified. Moreover, it leads to failure in retaining sufficient level of details from data inferences. In this paper we propose a method that can preserve detailed inferences from remote sensing datasets accompanied with crowd-sourced data. We show that advanced machine learning techniques can be utilized towards this objective. The proposed method relies on two steps, firstly we enhance the spatial resolution of the satellite image using Convolutional Neural Networks and secondly we fuse the crowd-sourced data with the upscaled version of the satellite image. However, the covered scope in this paper is concerning the first step. Results show that CNN can enhance Landsat 8 scenes resolution visually and quantitatively.


Author(s):  
Q. J. Chen ◽  
Y. R. He ◽  
T. T. He ◽  
W. J. Fu

Abstract. The satellite image data has some shortcomings such as poor timeless, incomplete disaster information and so on in the typhoon disaster analysis. Compared with the satellite image data, unmanned aerial vehicle (UAV) remote sensing technology has the characteristics of flexibility, convenience, high resolution and so on. It plays a great role in the aspect of obtaining the images and systematically analyze the disaster data. This research based on UAV technology to obtain the high resolution image data and complied the disaster thematic maps after interpretation, as well as determining the data model. Subsequently, determining the system used Html, Javascript and CSS to build the system framework. Combining with Postgre SQL database, Leaflet map module and Echarts diagram and other technologies to perform the feasibility analysis and the detailed design of the integrated system. Finally, it could accurately and comprehensively obtain the system’s disaster monitoring, the typhoon track display, the diagram statistics and visual analysis of the data processing, as well it could deeply analysis and management for the disaster information and assessment. The application shows that this system could provide the information support for future emergency rescue, which is of great significance for the monitoring and preventing the occurrence natural disasters in the future.


2020 ◽  
Vol 9 (4) ◽  
pp. 184-191
Author(s):  
Sergey Arkadyevich Shurakov ◽  
Aleksey Nikolaevich Chashchin

This paper discusses the possibilities of using Landsat 8 remote sensing data for assessing the temperature conditions of aquatic landscapes when studying the abundance and density of gulls. The study of the ornithological situation was carried out on the territory of the Perm international airport of the Perm Region, where the black-headed gull is an unfavorable factor in the safety of passenger aircraft flights. Within the boundaries of the region, 5 reservoirs were identified. A method for calculating the surface temperature from a multispectral satellite image of the Landsat 8 series is described in detail with the presentation of primary data sources, atmospheric parameters and obtaining raster coverage with a resolution of 30 meters per pixel. The tool used for the calculation is the Land Surface Temperature module of the QGIS software. The paper presents maps of temperature within the area of conducted ornithological surveys and the density of gulls. The densities of birds for individual bodies of water are calculated using the Spatial Analyst module of the ArcGIS program with the kernel density tool. According to the research results, a close correlation was established between the attractiveness of reservoirs for gulls and water temperature. The correlation coefficients were 0,83 and 0,71, respectively, with the abundance and density of gulls.


Sign in / Sign up

Export Citation Format

Share Document