scholarly journals Vehicle Routing and Scheduling Problem for a multi-period, multi-perishable product system with time window: A Case study

Author(s):  
Alireza Rashidi Komijan ◽  
Danial Delavari

<div data-canvas-width="542.172"><p>The well-known Vehicle Routing Problem (VRP) is to find proper sequence of routes in order to minimize transportation costs. In this paper, a mixed-integer programming model is presented for a food distributer company and the model outputs are to determine the optimal routes and amount of pickup and delivery. In the objective function, the costs of transportation, holding, tardiness and earliness are considered simultaneously. The proposed model with respect to real conditions is multi-period and has two different time periods: one for dispatching vehicles to customers and suppliers and the other for receiving  customers’ orders. Time window and split pickup and delivery are considered for perishable products. The proposed model is  nonlinear and will be linearized using exact techniques. At the end, model is solved using GAMS and the sensitivity analysis  is performed. The results indicate that the trend of changes in holding and transportation costs in compared to tardiness and  earliness costs are closed together and are not so sensitive to demand changes.</p></div>

2014 ◽  
Vol 931-932 ◽  
pp. 578-582
Author(s):  
Sunarin Chanta ◽  
Ornurai Sangsawang

In this paper, we proposed an optimization model that addresses the evacuation routing problem for flood disaster when evacuees trying to move from affected areas to safe places using public transportation. A focus is on the situation of evacuating during high water level when special high vehicles are needed. The objective is to minimize the total traveled distance through evacuation periods where a limited number of vehicles is given. We formulated the problem as a mixed integer programming model based on the capacitated vehicle routing problem with multiple evcuation periods where demand changing by the time. The proposed model has been tested on a real-world case study affected by the severe flooding in Thailand, 2011.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenfeng Jiang ◽  
Dongxu Chen ◽  
Zhongzhen Yang

A Synchronous Optimization for Multiship Shuttle Tanker Fleet Design and Scheduling is solved in the context of development of floating production storage and offloading device (FPSO). In this paper, the shuttle tanker fleet scheduling problem is considered as a vehicle routing problem with hard time window constraints. A mixed integer programming model aiming at minimizing total transportation cost is proposed to model this problem. To solve this model, we propose an exact algorithm based on the column generation and perform numerical experiments. The experiment results show that the proposed model and algorithm can effectively solve the problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guangcan Xu ◽  
Qiguang Lyu

In recent years, emergency events have affected urban distribution with increasing frequency. For example, the 2019 novel coronavirus has caused a considerable impact on the supply guarantee of important urban production and living materials, such as petrol and daily necessities. On this basis, this study establishes a dual-objective mixed-integer linear programming model to formulate and solve the cooperative multidepot petrol emergency distribution vehicle routing optimization problem with multicompartment vehicle sharing and time window coordination. As a method to solve the model, genetic variation of multiobjective particle swarm optimization algorithm is considered. The effectiveness of the proposed method is analyzed and verified by first using a small-scale example and then investigating a regional multidepot petrol distribution network in Chongqing, China. Cooperation between petrol depots in the distribution network, customer clustering, multicompartment vehicle sharing, time window coordination, and vehicle routing optimization under partial road blocking conditions can significantly reduce the total operation cost and shorten the total delivery time. Meanwhile, usage of distribution trucks is optimized in the distribution network, that is, usage of single- and double-compartment trucks is reduced while that of three-compartment trucks is increased. This approach provides theoretical support for relevant government departments to improve the guarantee capability of important materials in emergencies and for relevant enterprises to improve the efficiency of emergency distribution.


2021 ◽  
Vol 22 (1) ◽  
pp. 125-137
Author(s):  
Muhammad Alde Rizal ◽  
Ifa Saidatuningtyas

Vehicle routing problems and inventory problems need to be integrated in order to improve performance. This research discusses the determination of vehicle routes for product delivery with periodic delivery times that are released at any time depending on the inventory status. A mixed-integer linear programming model in determining periodic flexible visiting vehicles' route considering inventory is proposed to solve this problem. This model also accommodates time window constraints, retailer warehouse capacity. The search for solutions was carried out using the branch-and-bound method with the help of Lingo 18.0. The mathematical model testing result saves shipping costs and inventory costs. In addition, the developing mathematical model offers the flexibility of visiting depending on the inventory status of the consumer. The sensitivity analysis of the model results in the vehicle capacity influence the total cost and routes formed.


2012 ◽  
Vol 482-484 ◽  
pp. 2322-2326 ◽  
Author(s):  
Yong Ji Jia ◽  
Chang Jun Wang

In this paper, a useful variant of the vehicle routing problem, Vehicle Routing Problem with Time Windows and a limited number of vehicles (m-VRPTW) is given. The problem is to serve a number of customers at minimum cost by using a limited number of vehicles, without violating the time window constraint and the vehicle capacity constraint. The feasible solution of m-VRPTW may contain some unserved customers and third-party vehicles, such as taxies, are hired to serve these unserved customers. The mixed integer programming model of m-VRPTW is proposed and a two-phase algorithm based on insertion algorithm and tabu search algorithm is proposed to solve it. Experimental results show that our algorithm can yield effective and efficient solution and be capable of dealing with the m-VRPTW problems in real life conditions.


2017 ◽  
Vol 7 (13) ◽  
Author(s):  
J. Fabián López

Key words: Genetic algorithms, logistics routing, metaheuristics, scheduling, time windowsAbstract. We consider a Pickup and Delivery Vehicle Routing Problem (PDP) commonly encountered in real-world logistics operations. The problem involves a set of practical complications that have received little attention in the vehicle routing literature. In this problem, there are multiple vehicle types available to cover a set of pickup and delivery requests, each of which has pickup time windows and delivery time windows. Transportation orders and vehicle types must satisfy a set of compatibility constraints that specify which orders cannot be covered by which vehicle types. In addition we include some dock servicecapacity constraints as is required on common real world operations. This problem requires to be attended on large scale instances (orders ≥ 500), (vehicles ≥ 150). As a generalization of the traveling salesman problem, clearly this problem is NP-hard. The exact algorithms are too slow for large scale instances. The PDP-TWDS is both a packing problem (assign order tovehicles), and a routing problem (find the best route for each vehicle). We propose to solve the problem in three stages. The first stage constructs initials solutions at aggregate level relaxing some constraints on the original problem. The other two stages imposes time windows and dock service constraints. Our results are favorable finding good quality solutions in relatively short computational times.Palabras claves. Algoritmos genéticos, logística de ruteo, metahurística, programación, ventana de horarioResumen. En la solución de problemas combinatorios, es importante evaluar el costobeneficio entre la obtención de soluciones de alta calidad en detrimento de los recursos computacionales requeridos. El problema planteado es para el ruteo de un vehículo con entrega y recolección de producto y con restricciones de ventana de horario. En la práctica, dicho problema requiere ser atendido con instancias de gran escala (nodos ≥100). Existe un fuerte porcentaje de ventanas de horario activas (≥90%) y con factores de amplitud ≥75%. El  problema es NP-hard y por tal motivo la aplicación de un método de solución exacta para resolverlo en la práctica, está limitado por el tiempo requerido para la actividad de ruteo. Se propone un algoritmo genético especializado, el cual ofrece soluciones de buena calidad (% de optimalidad aceptables) y en tiempos de ejecución computacional que hacen útil su aplicación en la práctica de la logística. Para comprobar la eficacia de la propuesta algorítmica se desarrolla un diseño experimental el cual hará uso de las soluciones óptimas obtenidas mediante un algoritmo de ramificación y corte sin límite de tiempo. Los resultados son favorables.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 771 ◽  
Author(s):  
Cosmin Sabo ◽  
Petrică C. Pop ◽  
Andrei Horvat-Marc

The Generalized Vehicle Routing Problem (GVRP) is an extension of the classical Vehicle Routing Problem (VRP), in which we are looking for an optimal set of delivery or collection routes from a given depot to a number of customers divided into predefined, mutually exclusive, and exhaustive clusters, visiting exactly one customer from each cluster and fulfilling the capacity restrictions. This paper deals with a more generic version of the GVRP, introduced recently and called Selective Vehicle Routing Problem (SVRP). This problem generalizes the GVRP in the sense that the customers are divided into clusters, but they may belong to one or more clusters. The aim of this work is to describe a novel mixed integer programming based mathematical model of the SVRP. To validate the consistency of the novel mathematical model, a comparison between the proposed model and the existing models from literature is performed, on the existing benchmark instances for SVRP and on a set of additional benchmark instances used in the case of GVRP and adapted for SVRP. The proposed model showed better results against the existing models.


2020 ◽  
Vol 54 (2) ◽  
pp. 488-511
Author(s):  
Edward Lam ◽  
Pascal Van Hentenryck ◽  
Phil Kilby

Traditional vehicle routing problems implicitly assume that only one crew operates a vehicle for the entirety of its journey. However, this assumption is violated in many applications arising in humanitarian and military logistics. This paper considers a joint vehicle and crew routing and scheduling problem in which crews are able to interchange vehicles, resulting in space and time interdependencies between vehicle routes and crew routes. The problem is formulated as a mixed integer programming (MIP) model and a constraint programming (CP) model that overlay crew routing constraints over a standard vehicle routing problem. The constraint program uses a novel optimization constraint to detect infeasibility and to bound crew objectives. This paper also explores methods using large neighborhood search over the MIP and CP models. Experimental results indicate that modeling the vehicle and crew routing problems jointly and supporting vehicle interchanges for crews may bring significant benefits in cost reduction compared with a method that sequentializes these decisions.


Sign in / Sign up

Export Citation Format

Share Document