scholarly journals Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT

2021 ◽  
pp. 89
Author(s):  
Susana I. Hinojosa-Espinoza ◽  
José L. Gallardo-Salazar ◽  
Félix J. C. Hinojosa-Espinoza ◽  
Anulfo Meléndez-Soto

<p>Unmanned Aerial Vehicles (UAVs) have given a new boost to remote sensing and image classification techniques due to the high level of detail among other factors. Object-based image analysis (OBIA) could improve classification accuracy unlike to pixel-based, especially in high-resolution images. OBIA application for image classification consists of three stages i.e., segmentation, class definition and training polygons, and classification. However, defining the parameters: spatial radius (SR), range radius (RR) and minimum region size (MR) is necessary during the segmentation stage. Despite their relevance, they are usually visually adjusted, which leads to a subjective interpretation. Therefore, it is of utmost importance to generate knowledge focused on evaluating combinations of these parameters. This study describes the use of the mean-shift segmentation algorithm followed by <em>Random Forest </em>classifier using Orfeo Toolbox software. It was considered a multispectral orthomosaic derived from UAV to generate a suburban map land cover in town of El Pueblito, Durango, Mexico. The main aim was to evaluate efficiency and segmentation quality of nine parameter combinations previously reported in scientific studies.This in terms of number generated polygons, processing time, discrepancy measures for segmentation and classification accuracy metrics. Results evidenced the importance of calibrating the input parameters in the segmentation algorithms. Best combination was RE=5, RR=7 and TMR=250, with a Kappa index of 0.90 and shortest processing time. On the other hand, RR showed a strong and inversely proportional degree of association regarding the classification accuracy metrics.</p>

Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2021 ◽  
Author(s):  
Ahmet Batuhan Polat ◽  
Ozgun Akcay ◽  
Fusun Balik Sanli

&lt;p&gt;Obtaining high accuracy in land cover classification is a non-trivial problem in geosciences for monitoring urban and rural areas. In this study, different classification algorithms were tested with different types of data, and besides the effects of seasonal changes on these classification algorithms and the evaluation of the data used are investigated. In addition, the effect of increasing classification training samples on classification accuracy has been revealed as a result of the study. Sentinel-1 Synthetic Aperture Radar (SAR) images and Sentinel-2 multispectral optical images were used as datasets. Object-based approach was used for the classification of various fused image combinations. The classification algorithms Support Vector Machines (SVM), Random Forest (RF) and K-Nearest Neighborhood (kNN) methods were used for this process. In addition, Normalized Difference Vegetation Index (NDVI) was examined separately to define the exact contribution to the classification accuracy. &amp;#160;As a result, the overall accuracies were compared by classifying the fused data generated by combining optical and SAR images. It has been determined that the increase in the number of training samples improve the classification accuracy. Moreover, it was determined that the object-based classification obtained from single SAR imagery produced the lowest classification accuracy among the used different dataset combinations in this study. In addition, it has been shown that NDVI data does not increase the accuracy of the classification in the winter season as the trees shed their leaves due to climate conditions.&lt;/p&gt;


2021 ◽  
Author(s):  
Xiaohong Yu ◽  
Yoseop Ahn ◽  
Jaehoon Jeong

Sign in / Sign up

Export Citation Format

Share Document